Prox-Gradient Method

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Prox-gradient method
Minimizing composite functions

- want to minimize $F(\theta) = f(\theta) + g(\theta)$ (called a *composite function*)
- f is differentiable, but g need not be
- example: minimize $\mathcal{L}(\theta) + \lambda r(\theta)$, with $r(\theta) = ||\theta||_1$
- we’ll see idea of gradient method extends directly to composite functions
Selective linearization

- At iteration k, linearize f but not g
 \[
 \hat{F}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k) + g(\theta)
 \]

- Want $\hat{F}(\theta; \theta^k)$ small, but with θ near θ^k

- Choose θ^{k+1} to minimize $\hat{F}(\theta; \theta^k) + \frac{1}{2h^k}||\theta - \theta^k||^2_2$, with $h^k > 0$

- Same as minimizing
 \[g(\theta) + \frac{1}{2h^k}||\theta - (\theta^k - h^k \nabla f(\theta^k))||^2\]

- For many ‘simple’ functions g, this minimization can be done analytically

- This iteration from θ^k to θ^{k+1} is called prox-gradient step
Prox-gradient iteration

- Prox-gradient iteration has two parts:
 1. **gradient step**: $\theta^{k+1/2} = \theta^k - h^k \nabla f(\theta^k)$
 2. **prox step**: choose θ^{k+1} to minimize $g(\theta) + \frac{1}{2h^k} \| \theta - \theta^{k+1/2} \|^2$

($\theta^{k+1/2}$ is an intermediate iterate, in between θ^k and θ^{k+1})

- step 1 handles differentiable part of objective, *i.e.*, f
- step 2 handles second part of objective, *i.e.*, g
Proximal operator

- given function \(q : \mathbb{R}^d \to \mathbb{R} \), and \(\kappa > 0 \),

\[
\text{prox}_{q,\kappa}(v) = \arg\min_{\theta} \left(q(\theta) + \frac{1}{2\kappa} \|\theta - v\|_2^2 \right)
\]

is called the \textit{proximal operator} of \(q \) at \(v \), with parameter \(\kappa \)

- the prox-gradient step can be expressed as

\[
\theta^{k+1} = \text{prox}_{g,h^k}(\theta^{k+1/2}) = \text{prox}_{g,h^k}(\theta^k - h^k \nabla f(\theta^k))
\]

- hence the name prox-gradient iteration
How to choose step length

- same as for gradient, but using $F(\theta) = f(\theta) + g(\theta)$

- a simple scheme:
 - if $F(\theta^{k+1}) > F(\theta^k)$, set $h^{k+1} = h^k / 2$, $\theta^{k+1} = \theta^k$ (a rejected step)
 - if $F(\theta^{k+1}) \leq F(\theta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)

- reduce step length by half if it’s too long; increase it 20% otherwise
Stopping criterion

- Stopping condition for prox-gradient method:

\[\left\| \nabla f(\theta^{k+1}) - \frac{1}{h^k}(\theta^{k+1} - \theta^{k+1/2}) \right\|_2 \leq \epsilon \]

- Analog of \(\|\nabla f(\theta^{k+1})\|_2 \leq \epsilon \) for gradient method

- Second term \(-\frac{1}{h^k}(\theta^{k+1} - \theta^{k+1/2}) \) serves the purpose of a gradient for \(g \) (which need not be differentiable)
choose an initial $\theta^1 \in \mathbb{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0, h^1 = 1$)

for $k = 1, 2, \ldots, k^{\text{max}}$

1. gradient step. $\theta^{k+1/2} = \theta^k - h^k \nabla f(\theta^k)$

2. prox step. $\theta^{\text{tent}} = \text{argmin}_\theta \left(g(\theta) + \frac{1}{2h^k} \|\theta - \theta^{k+1/2}\|^2 \right)$

3. if $F(\theta^{\text{tent}}) \leq F(\theta^k)$,
 (a) set $\theta^{k+1} = \theta^{\text{tent}}, h^{k+1} = 1.2h^k$
 (b) quit if $\|\nabla f(\theta^{k+1}) - \frac{1}{h^k} (\theta^{k+1} - \theta^{k+1/2})\|_2 \leq \varepsilon$

4. else set $h^k := 0.5h^k$ and go to step 1
Prox-gradient method convergence

- prox-gradient method finds a stationary point
 - suitably defined for non-differentiable functions
 - assuming some technical conditions hold

- for convex problems
 - prox-gradient method is non-heuristic
 - for any starting point θ^1, $F(\theta^k) \to F^*$ as $k \to \infty$

- for non-convex problems
 - prox-gradient method is heuristic
 - we can (and often do) have $F(\theta^k) \not\to F^*$
Prox-gradient for regularized ERM
Prox-gradient for sum squares regularizer

- Let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + \lambda \|\theta\|_2^2$
 - $f(\theta) = \mathcal{L}(\theta)$
 - $g(\theta) = \lambda \|\theta\|_2^2 = \lambda \theta_1^2 + \cdots + \lambda \theta_d^2$
- In prox step, we need to minimize $\lambda \theta_i^2 + \frac{1}{2hk} (\theta_i - \theta_i^{k+1/2})^2$ over θ_i
- Solution is $\theta_i = \frac{1}{1+2\lambda h^{k}} \theta_i^{k+1/2}$
- So prox step just shrinks the gradient step $\theta^{k+1/2}$ by the factor $\frac{1}{1+2\lambda h^{k}}$

Prox-gradient iteration:

1. Gradient step: $\theta^{k+1/2} = \theta^k - h^k \nabla \mathcal{L}(\theta^k)$
2. Prox step: $\theta^{k+1} = \frac{1}{1+2\lambda h^{k}} \theta^{k+1/2}$
Prox-gradient for ℓ_1 regularizer

- Let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + \lambda ||\theta||_1$
 - $f(\theta) = \mathcal{L}(\theta)$
 - $g(\theta) = \lambda ||\theta||_1 = \lambda |\theta_1| + \cdots + \lambda |\theta_d|$

- In prox step, we need to minimize $\lambda |\theta_i| + \frac{1}{2h^k}(\theta_i - \theta_i^{k+1/2})^2$ over θ_i

- Solution is

$$\theta_i^{k+1} = \begin{cases}
\theta_i^{k+1/2} - 2\lambda h^k & |\theta_i^{k+1/2}| > 2\lambda h^k \\
0 & |\theta_i^{k+1/2}| \leq 2\lambda h^k \\
\theta_i^{k+1/2} + 2\lambda h^k & |\theta_i^{k+1/2}| < -2\lambda h^k
\end{cases}$$

- Called soft threshold function

- Sometimes written as $\theta_i^{k+1} = S_{2\lambda h^k}(\theta_i^{k+1/2}) = \operatorname{sign}(\theta_i)(|\theta_i| - 2\lambda h^k)_+$
Soft threshold function

\[S_t(\theta) \]

- prox-gradient iteration for regularized ERM with \(\ell_1 \) regularization:
 1. gradient step: \(\theta^{k+1/2} = \theta^k - h^k \nabla \mathcal{L}(\theta^k) \)
 2. prox step: \(\theta^{k+1} = S_{2\lambda h^k}(\theta^{k+1/2}) \)

- the soft threshold step shrinks all coefficients
- and sets the small ones to zero
Prox-gradient step for nonnegative regularizer

- Let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + r(\theta)$, where $r(\theta) = 0$ for $\theta \geq 0$, ∞ otherwise
 - $f(\theta) = \mathcal{L}(\theta)$
 - $g(\theta) = q(\theta_1) + \cdots + q(\theta_d)$

- In prox step, we need to minimize $q(\theta_i) + \frac{1}{2h^k}(\theta_i - \theta_i^{k+1/2})^2$ over θ_i

- Solution is $\theta_i = \left(\theta_i^{k+1/2}\right)_+$

- So prox step just replaces the gradient step $\theta_i^{k+1/2}$ with its positive part

- Prox gradient iteration:
 1. Gradient step: $\theta_i^{k+1/2} = \theta_i^k - h^k \nabla \mathcal{L}(\theta_i^k)$
 2. Prox step: $\theta_i^{k+1} = \left(\theta_i^{k+1/2}\right)_+$
Example

- synthetic data, $n = 500$, $d = 200$
- lasso (square loss, ℓ_1 regularization), $\lambda = 0.1$