Optimization

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Optimization problems and algorithms
Optimization problem

\[\text{minimize } f(\theta) \]

- \(\theta \in \mathbb{R}^d \) is the \textit{variable} or \textit{decision variable}
- \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is the \textit{objective function}
- goal is to choose \(\theta \) to minimize \(f \)
- \(\theta^* \) is \textit{optimal} means that for all \(\theta \), \(f(\theta) \geq f(\theta^*) \)
- \(f^* = f(\theta^*) \) is the \textit{optimal value} of the problem
- optimization problems arise in many fields and applications, including machine learning
let’s assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist

if θ^* is optimal, then $\nabla f(\theta^*) = 0$

$\nabla f(\theta) = 0$ is called the optimality condition for the problem

there can be points that satisfy $\nabla f(\theta) = 0$ but are not optimal

we call points that satisfy $\nabla f(\theta) = 0$ stationary points

not all stationary points are optimal
Solving optimization problems

- in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = \|X\theta - y\|_2^2$
 - optimality condition is $\nabla f(\theta) = 2X^T(X\theta - y) = 0$
 - this has unique solution $\theta^* = (X^TX)^{-1}X^Ty = X^\dagger y$ (when columns of X are linearly independent)
- in other cases, we resort to an iterative algorithm that computes a sequence $\theta^1, \theta^2, \ldots$ with, hopefully, $f(\theta^k) \to f^* \text{ as } k \to \infty$
Iterative algorithms

- **iterative algorithm** computes a sequence $\theta^1, \theta^2, \ldots$
- θ^k is called the kth **iterate**
- θ^1 is called the **starting point**
- many iterative algorithms are **descent methods**, which means
 \[f(\theta^{k+1}) < f(\theta^k), \quad k = 1, 2, \ldots \]
 i.e., each iterate is better than the previous one
- this means that $f(\theta^k)$ converges, but not necessarily to f^*
Stopping criterion

- in practice, we stop after a finite number K of steps
- typical stopping criterion: stop if $\|\nabla f(\theta^k)\|_2 \leq \epsilon$ or $k = k^{\text{max}}$
- ϵ is a small positive number, the stopping tolerance
- k^{max} is the maximum number of iterations
- in words: we stop when θ^k is almost a stationary point
- we hope that $f(\theta^K)$ is not too much bigger than f^*
- or more realistically, that θ^K is at least useful for our application
Non-heuristic and heuristic algorithms

- in some cases we *know* that $f(\theta^k) \to f^*$, for any θ^1
- in words: *we'll get to a solution if we keep iterating*
- called *non-heuristic*

- other algorithms do not guarantee that $f(\theta^k) \to f^*$
- we can hope that even if $f(\theta^k) \not\to f^*$, θ^k is still useful for our application
- called *heuristic*
Convex functions

- a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex if for any $\theta, \tilde{\theta}$, and α with $0 \leq \alpha \leq 1$,

$$f(\alpha \theta + (1 - \alpha)\tilde{\theta}) \leq \alpha f(\theta) + (1 - \alpha)f(\tilde{\theta})$$

- roughly speaking, f has ‘upward curvature’

- for $d = 1$, same as $f''(\theta) \geq 0$ for all θ
Convex optimization

- optimization problem

 \[
 \text{minimize } f(\theta)
 \]

 is called *convex* if the objective function \(f \) is convex

- for convex optimization problem, \(\nabla f(\theta) = 0 \) only for \(\theta \) optimal, *i.e.*, all stationary points are optimal

- algorithms for convex optimization are non-heuristic

- *i.e.*, *we can solve convex optimization problems* (exactly, in principle)
Convex ERM problems

- linear prediction model $\hat{y} = \theta^T x$

- regularized empirical risk function $f(\theta) = \mathcal{L}(\theta) + \lambda r(\theta)$, with $\lambda \geq 0$,

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} p(\theta^T x^i - y^i), \quad r(\theta) = q(\theta_1) + \cdots + q(\theta_d)$$

- f is convex if loss penalty p and parameter penalty q functions are convex

- convex penalties: square, absolute, tilted absolute, Huber, logistic

- non-convex penalties: log Huber, squareroot
Gradient method
Gradient method

- assume \(f \) is differentiable
- at iteration \(\theta^k \), create affine (Taylor) approximation of \(f \) valid near \(\theta^k \)
 \[
 \hat{f}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T(\theta - \theta^k)
 \]
- \(\hat{f}(\theta; \theta^k) \approx f(\theta) \) for \(\theta \) near \(\theta^k \)
- choose \(\theta^{k+1} \) to make \(\hat{f}(\theta^{k+1}; \theta^k) \) small, but with \(\|\theta^{k+1} - \theta^k\|_2 \) not too large
- choose \(\theta^{k+1} \) to minimize \(\hat{f}(\theta; \theta^k) + \frac{1}{2h^k}\|\theta - \theta^k\|_2^2 \)
- \(h^k > 0 \) is a trust parameter or step length or learning rate
- solution is \(\theta^{k+1} = \theta^k - h^k \nabla f(\theta^k) \)
- roughly: take step in direction of negative gradient
Gradient method update

- choose θ^{k+1} to as minimizer of

$$f(\theta^k) + \nabla f(\theta^k)^T(\theta - \theta^k) + \frac{1}{2h^k}||\theta - \theta^k||_2^2$$

- rewrite as

$$f(\theta^k) + \frac{1}{2h^k}||\theta - \theta^k|| + h^k \nabla f(\theta^k)||_2^2 - \frac{h^k}{2}||\nabla f(\theta^k)||_2^2$$

- first and third terms don’t depend on θ

- middle term is minimized (made zero!) by choice

$$\theta = \theta^k - h^k \nabla f(\theta^k)$$
How to choose step length

- if h^k is too large, we can have $f(\theta^{k+1}) > f(\theta^k)$
- if h^k is too small, we have $f(\theta^{k+1}) < f(\theta^k)$ but progress is slow

- a simple scheme:
 - if $f(\theta^{k+1}) \geq f(\theta^k)$, set $h^{k+1} = h^k / 2$, $\theta^{k+1} = \theta^k$ (a rejected step)
 - if $f(\theta^{k+1}) < f(\theta^k)$, set $h^{k+1} = 1.2 h^k$ (an accepted step)

- reduce step length by half if it’s too long; increase it 20% otherwise
Gradient method summary

choose an initial $\theta^1 \in \mathbb{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0$, $h^1 = 1$)

for $k = 1, 2, \ldots, k_{\text{max}}$

1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
2. form tentative update $\theta^{\text{tent}} = \theta^k - h^k \nabla f(\theta^k)$
3. if $f(\theta^{\text{tent}}) < f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
4. else set $h^k := 0.5h^k$ and go to step 2
Gradient method convergence

- (assuming some technical conditions hold) we have

\[||\nabla f(\theta^k)||_2 \to 0 \text{ as } k \to \infty \]

- i.e., the gradient method always finds a stationary point

- for **convex problems**
 - gradient method is *non-heuristic*
 - for any starting point \(\theta^1 \), \(f(\theta^k) \to f^\star \) as \(k \to \infty \)

- for **non-convex problems**
 - gradient method is *heuristic*
 - we can (and often do) have \(f(\theta^k) \not\to f^\star \)
Example: Convex objective

\[f(\theta) = \frac{1}{3} \left(p_{\text{hub}}(\theta_1 - 1) + p_{\text{hub}}(\theta_2 - 1) + p_{\text{hub}}(\theta_1 + \theta_2 - 1) \right) \]

\(f \) is convex

optimal point is \(\theta^* = (2/3, 2/3) \), with \(f^* = 1/9 \)
Example: Convex objective

- $f(\theta^k)$ is a decreasing function of k, (roughly) exponentially

- $\|\nabla f(\theta^k)\| \to 0$ as $k \to \infty$
Example: Non-convex objective

- \(f(\theta) = \frac{1}{3} (p^{lh}(\theta_1 + 3) + p^{lh}(2\theta_2 + 6) + p^{lh}(\theta_1 + \theta_2 - 1)) \)
- \(f \) is sum of log-Huber functions, so not convex
- gradient algorithm converges, but limit depends on initial guess
Example: Non-convex objective
Example: Non-convex objective

\[f(\theta^k) - f^* \]

\[\| \nabla f(\theta^k) \|_2 \]
Gradient method for ERM
Gradient of empirical risk function

- predictor is $\hat{y} = g_\theta(x)$; we consider case of scalar y
- empirical risk is sum of terms for each data point
 \[\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) = \frac{1}{n} \sum_{i=1}^{n} \ell(g_\theta(x^i), y^i) \]
- convex if loss function ℓ is convex in first argument and predictor is linear, i.e., $g_\theta(x) = \theta^T x$
- gradient is sum of terms for each data point
 \[\nabla \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell'(g_\theta(x^i), y^i) \nabla g_\theta(x^i) \]
 - $\ell'(\hat{y}, y)$ is derivative of ℓ with respect to its first argument \hat{y}
 - $\nabla g_\theta(x)$ is the gradient of $g_\theta(x)$ with respect to θ
Evaluating gradient of empirical risk function

- Assume linear predictor, \(g_\theta(x) = \theta^T x \), so \(\nabla g_\theta(x) = x \)

- Gradient is

\[
\nabla \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell'(\theta^T x_i, y^i)x^i
\]

- Compute \(n \)-vector \(\hat{y}^k = X\theta^k \)

- Compute \(n \)-vector \(z^k \), with entries \(z^k_i = \ell'(\hat{y}^k_i, y^i) \)

- Compute \(d \)-vector \(\nabla \mathcal{L}(\theta^k) = (1/n)X^T z^k \)

- First and third steps are matrix-vector multiplication, each costing \(2nd \) flops

- Second step costs order \(n \) flops (dominated by other two)

- Total is \(4nd \) flops
Validation

- can evaluate performance measure on train and test data sets as gradient method runs
- predictor is often good enough well before gradient descent has converged
- optimization is only a surrogate for what we want (i.e., a predictor that predicts well on unseen data)