
EE104, Spring 2024 S. Lall and S. Boyd

Homework 8

1. Imputing missing entries in data using a k-means data model. In impute_via_kmeans.json,
you will find a 750×2 matrix X_train and a 750×2-vector X_test consisting of train-
ing and test data. (There is no output data.) In this exercise you will fit k-means data
models and impute missing entries in data, for k = 5, 10, 15, 20, 25. This will allow us
to choose a suitable value of k, based on how well each data model does at imputing
data on the test set.

(a) Edit k_means.jl to fit a k-means data model to X_train for k = 5, 10, 15, 20, 25.
The provided function fit_kmeans(X, k) fits k clusters to data matrix X and
returns a 2× k matrix theta. Each column of theta is the center of one of the k
clusters.

(b) In k_means.jl, we additionally provide a 750 × 2 matrix X_test_missing. The
matrix X_test_missing is identical to X_test except that one of the two entries of
every row of X_test_missing has the value NaN, which stands for ‘not a number’,
i.e., missing data.

Use each of the five data models created in part (a) to impute the missing val-
ues in X_test_missing, in a matrix called X_test_imputed. Evaluate the RMS
imputation error for each data model, and plot it versus k.

Suggest a choice of k based on this plot, with a very brief explanation.

(c) Scatter plot X_train and X_test. Approximately how many clusters appear in
the data?

Julia hints. The function isnan(value) returns true if value is NaN and returns false
otherwise. The function argmin(v) returns the index of vector v that corresponds to
the smallest element of v. You can use these functions to iterate over the rows of
X_test_missing, iterate over the two entries of the row to find the non-missing entry,
find the center with the smallest distance to the non-missing entry, and fill the missing
entry using the identified center. Do not be afraid to use nested if and for loops.

1



2. Using PCA for data visualization. In pca.jl we provide a function pca(X, r) that
returns the rank-r PCA model of the data given in X. The pca function returns the
first r archetypes of of a PCA data model on X as the columns of a 10101× r matrix.
You will use this function to compress the data into R2 so it can be visualized.

(a) The starter code in pca.jl loads a 995×10101 matrix X of genetic data from some
African and African diaspora populations and a list of 995 strings demographics
of population identifiers from pca_data.json. The row X[i,:] is the genetic data
for the ith individual, and the string demographics[i] indicates the population
to which they belong. These populations are listed below.

Population identifier Population
ACB African Caribbean in Barbados
GWD Gambian in Western Division, The Gambia
ESN Esan in Nigeria
MSL Mende in Sierra Leone
YRI Yoruba in Ibadan, Nigeria
LWK Luhya in Webuye, Kenya
ASW African Ancestry in Southwest US

Note that some of these populations are similar to each other, for example ACB
and ASW are both in the Americas, and ESN and YRI are both in Nigeria.

Use the function pca to create a PCA data model with r = 2. You should use the
PCA model to create a 995× 2 matrix of compressed genetic data.

(b) In pca.jl, call the provided function plot_pca(points, labels). Pass the func-
tion your compressed data from part (a) for points and the list of demographics
from pca_data.json for labels. The plot_pca function will produce a 2d scatter
plot of the compressed data with the populations corresponding to distinct colors.
Note that the population was not used in creating the original data matrix or the
compressed one found from PCA.

(c) Make a few brief comments on the results.

Notes. Here we describe the data in a bit more detail. None of this is needed to solve
the problem. The data is originally from the International Genome Sample Resource;
we obtained it from CS 168 at Stanford taught by Prof. Greg Valiant. The raw data is
available in the starter code in igsr_africa.txt. The first column of the raw data is an
identifier, the second column is the individual’s sex, the third column is the population
identifier, and the remaining columns list the nucleobase (‘A’, ‘G’, ‘C’, or ‘T’) found
at specific positions in an individual’s DNA. Each column corresponds to a specific
nucleotide position in the human genome. Each position can take only one of two
values, either ‘A’ or ‘T’ or ‘G’ or ‘C’). The matrix X you are given in pca_data.json

was formed by embedding ‘A’s and ‘G’s as 1 and all ‘T’s and ‘C’s as 0, and then
demeaning the columns.

2



3. Gradient descent for regularized logistic regression. On previous homework assign-
ments, you fit linear models with logistic loss for binary classification using the provided
rerm_lin_reg function. In this exercise you will write a similar function from scratch.

In opt_data.json, you will find a 300×30 matrix X and a 300-vector y, which represents
Boolean data and takes the two values ±1. The goal of this problem is to find the vector
θ⋆ ∈ R10 that minimizes the function

f(θ) =
1

300

300∑
i=1

log(1 + e−yix
T
i θ) + λ∥θ∥22,

with λ = 10−2. (This is the logistic loss plus a sum-squares regularizer.)

(a) The gradient method is as follows:

i. Initialize θ1 to be the zero vector in R10 and h1 = 1.

ii. For k = 1, 2, . . . , kmax:

A. Set θtent = θk − hk∇f(θk).

B. If f(θtent) < f(θk) then set θk+1 = θtent and hk+1 = 1.2hk.

C. Otherwise, set θk+1 = θk and hk+1 = 0.5hk.

iii. Return θ1, . . . , θ
kmax+1.

(We would normally only be interested in the last iterate, but here we want to see
the progress of the method.)

In gradient.jl, complete the gradient_method by implementing the gradient
method as described here. While the derivative function ∇f(θ) of f(θ) can be
computed by hand, this is often not done in practice. Instead, libraries can be
used to automatically compute the gradients of functions. Such tools are known as
autograds or autodiffs. In Julia, the function gradient(f, theta)[1] evaluates
the derivative of function f at point theta. Use the gradient function in your
implementation of gradient_method; do not compute the gradient explicitly.

(b) Run gradient_method on the given function f with kmax = 35. Since f is convex
the gradient method is non-heuristic; we are guaranteed that the iterates converge
to a minimizer of f .

Using the iterates θ1, . . . , θ
kmax+1 output by gradient_method, plot the loss values

f(θk) and the gradient norms ∥∇f(θk)∥2 versus the iteration number k. You
should see that the loss values are decreasing, and the gradient norms are tending
toward zero. This indicates that the gradient method is approaching the exact
solution.

3


