Homework 5

Before running any code for this week’s problems, run the script setup.jl included with this week’s starter code. You only need to run the script once. It will install the necessary Julia packages for this week’s problems.

1. Non-quadratic losses and regularizers. In rerm_lin_reg.jl we have provided you with a function

\[
\text{rerm_lin_reg}(X, Y, l, r, \lambda).
\]

This function takes in input/output data \(X\) and \(Y\), a loss function \(l(\hat{y}, y)\), a local regularizer function \(r(\theta)\), and a local positive regularization hyper-parameter \(\lambda\). It outputs the model parameters \(\theta\) for the associated RERM linear predictor. The function handles four different loss functions:

- Quadratic loss: \(\ell(\hat{y}, y) = (\hat{y} - y)^2\).
- Absolute loss: \(\ell(\hat{y}, y) = |\hat{y} - y|\).
- Huber loss, with \(\alpha = 1\): \(\ell(\hat{y}, y) = p^\text{hub}_\alpha(\hat{y} - y)\), where

\[
p^\text{hub}_\alpha(r) = \begin{cases} r^2 & |r| \leq \alpha \\ \alpha(2|r| - \alpha) & |r| > \alpha. \end{cases}
\]

- Log Huber loss, with \(\alpha = 1\): \(\ell(\hat{y}, y) = p^\text{dh}_\alpha(\hat{y} - y)\), where

\[
p^\text{dh}_\alpha(r) = \begin{cases} r^2 & |r| \leq \alpha \\ \alpha^2(1 - 2\log(\alpha) + \log(r^2)) & |r| > \alpha. \end{cases}
\]

The function handles two types of regularization:

- Quadratic or ridge regularization: \(r(\theta) = \|\theta_{2:k}\|^2_2\).
- Lasso regularization: \(r(\theta) = \|\theta_{2:k}\|_1\).

(a) First, implement the penalty, loss, and regularization functions in the the file regression_fit.jl in the provided starter code. You only need to edit the code wherever there is a comment of the form \#TODO. Do not make other edits. Attach your completed regression_fit.jl.

(b) In non_quadratic.json, you will find a 500 \times 300 matrix \(X_{\text{train}}\) and a 500-vector \(y_{\text{train}}\) consisting of raw training input and output data, and a 500 \times 300 matrix \(X_{\text{test}}\) and a 500-vector \(y_{\text{test}}\) consisting of raw test input and output data, respectively.

Load the data in non_quadratic.json. Standardize the training set, and standardize the test set using the mean and standard deviation from the corresponding feature columns in the training set. Add a constant feature.
(c) Use the loss functions you implemented in part (a) and `rerm_lin_reg` to fit linear models with each combination of quadratic, Huber, and log Huber loss; quadratic and lasso regularization; and regularization parameter λ values $10^{-2}, 10^{0}, 10^{2}$. In total, you should fit 18 linear models. Report a training and test average absolute error for each model. Attach your code.

(d) Which loss / regularizer / λ combination performs best? Create a one-sentence conjecture about why the particular model was the best one.

2. How often does your predictor over-estimate? In this problem, you will identify how often linear predictors with tilted absolute losses over-estimate. In `residual.props.json`, you will find a 500×10 matrix X_{train} and a 500-vector y_{train} consisting of raw training input and output data, and a 500×10 matrix X_{test} and a 500-vector y_{test} consisting of test input and output data, respectively.

Recall that the tilted absolute penalty is

$$p_\tau(u) = \begin{cases}
-\tau u & u < 0 \\
(1 - \tau)u & u \geq 0,
\end{cases}$$

where $\tau \in [0, 1]$.

Your task is to implement the tilted absolute penalty and tilted absolute loss in the file `residual.props.jl` in the provided starter code. After implementing the necessary functions, run `residual.props.jl` and report how frequently this predictor over-estimates ($%$ of $\hat{y} > y$) on both the training and testing set for $\tau = 0.15, 0.5, 0.85$. Attach both the completed `residual.props.jl` and the generated plot of the empirical CDFs (Cumulative Distribution Function) of the residuals.