Homework 5

Before running any code for this week's problems, run the script setup.jl included with this week's starter code. You only need to run the script once. It will install the necessary Julia packages for this week's problems.

1. *Non-quadratic losses and regularizers.* In rerm_lin_reg.jl we have provided you with a function

rerm_lin_reg(X, Y, l, r, lambda).

This function takes in input/output data X and Y, a loss function l(yhat, y), a local regularizer function r(theta), and a local positive regularization hyper-parameter lambda. It outputs the model parameters theta for the associated RERM linear predictor. The function handles four different loss functions:

- Quadratic loss: $\ell(\hat{y}, y) = (\hat{y} y)^2$.
- Absolute loss: $\ell(\hat{y}, y) = |\hat{y} y|$.
- Huber loss, with $\alpha = 1$: $\ell(\hat{y}, y) = p_{\alpha}^{\text{hub}}(\hat{y} y)$, where

$$p_{\alpha}^{\text{hub}}(r) = \begin{cases} r^2 & |r| \le \alpha\\ \alpha(2|r| - \alpha) & |r| > \alpha. \end{cases}$$

• Log Huber loss, with $\alpha = 1$: $\ell(\hat{y}, y) = p_{\alpha}^{dh}(\hat{y} - y)$, where

$$p^{\rm dh}_{\alpha}(r) = \begin{cases} r^2 & |r| \leq \alpha \\ \alpha^2 (1 - 2\log(\alpha) + \log(r^2)) & |r| > \alpha. \end{cases}$$

The function handles two types of regularization:

- Quadratic or ridge regularization: $r(\theta) = \|\theta_{2:k}\|_2^2$.
- Lasso regularization: $r(\theta) = \|\theta_{2:k}\|_1$.
- (a) First, implement the penalty, loss, and regularization functions in the file regression_fit.jl in the provided starter code. You only need to edit the code wherever there is a comment of the form #TODO. Do not make other edits. Attach your completed regression_fit.jl.
- (b) In non_quadratic.json, you will find a 500 × 300 matrix X_train and a 500-vector y_train consisting of raw training input and output data, and a 500 × 300 matrix X_test and a 500-vector y_test consisting of raw test input and output data, respectively.

Load the data in non_quadratic.json. Standardize the training set, and standardize the test set using the mean and standard deviation from the corresponding feature columns in the training set. Add a constant feature.

- (c) Use the loss functions you implemented in part (a) and rerm_lin_reg to fit linear models with each combination of quadratic, Huber, and log Huber loss; quadratic and lasso regularization; and regularization parameter λ values 10^{-2} , 10^{0} , 10^{2} . In total, you should fit 18 linear models. Report a training and test average absolute error for each model. Attach your code.
- (d) Which loss / regularizer / λ combination performs best? Create a one-sentence conjecture about why the particular model was the best one.
- 2. How often does your predictor over-estimate? In this problem, you will identify how often linear predictors with tilted absolute losses over-estimate. In residual_props.json, you will find a 500 × 10 matrix X_train and a 500-vector y_train consisting of raw training input and output data, and a 500 × 10 matrix X_test and a 500-vector y_test consisting of test input and output data, respectively.

Recall that the tilted absolute penalty is

$$p_{\tau}(u) = \begin{cases} -\tau u & u < 0\\ (1-\tau)u & u \ge 0, \end{cases}$$

where $\tau \in [0, 1]$.

Your task is to implement the tilted absolute penalty and tilted absolute loss in the file residual_props.jl in the provided starter code. After implementing the necessary functions, run residual_props.jl and report how frequently this predictor over-estimates (% of $\hat{y} > y$) on both the training and testing set for $\tau = 0.15, 0.5, 0.85$. Attach both the completed residual_props.jl and the generated plot of the empirical CDFs (Cumulative Distribution Function) of the residuals.