
EE104, Spring 2024 S. Lall and S. Boyd

Homework 4

1. Constant predictors. Consider a constant predictor of a scalar y, of the form g(θ) = θ.
(We remove the dependence of g on the feature vector x, since there isn’t a feature
vector in this case.) You will find the outcome vector y for this problem in
constant_predictors.json.

(a) Find the constant predictor parameter θmse that minimizes mean square error on
the given datatset. Report θmse up to two decimal points.

(b) Find the constant predictor parameter θaae that minimizes average absolute error
on the given datatset. Report θaae up to two decimal points.

(c) Comparison. Give a table that shows the root mean square (RMS) and average
absolute error (AAE) for the two constant predictors with parameters θmse and
θaae on the given dataset. Report these numbers up to two decimal points. (Your
table will contain 4 numbers.)

Hint. Consider plotting or viewing the entries of y.

2. Fitting the leaf values in a tree predictor. We consider a decision tree predictor for a
scalar outcome y. Suppose the decision tree is fixed, i.e., for each non-leaf vertex, we
fix the feature to split on, and we fix the threshold. To fully specify the decision tree
predictor, we need to give the value of ŷ for each leaf vertex. We denote the leaf values
as θj, for j = 1, . . . , p, where p is the number of leaves in the decision tree. We collect
these leaf values into a parameter vector θ ∈ Rp, and focus on how to choose θ using
ERM, given the data y1, . . . , yn.

We let L(x) ∈ {1, . . . , p} denote the leaf that the feature x ∈ Rd falls in. Let Ij = {i |
L(xi) = j} denote the set of indices of our data set for which the feature lies in leaf j,
for j = 1, . . . , p. We will assume that each of these sets is nonempty, i.e., at least one
feature in our data set falls in each of the leaves.

(a) Explain how to choose θ using ERM with quadratic loss.

(b) Explain how to choose θ using ERM with absolute loss.

For both cases, you can give your answer in English, and without justification.

3. Sequential outlier removal. We consider the problem of fitting data corrupted with
outliers, using a simple sequential outlier removal method. In outlier_rem.json,
you will find a 250 × 10 matrix U_train and a 250-vector v_train consisting of raw
training input and output data, and a 250×10 matrix U_test and a 250-vector v_test
consisting of raw test input and output data, respectively. We will work with input
and output embeddings x = ϕ(u) = u and y = ψ(v) = v. and you will use a simple
linear predictor (without a constant feature) with square loss to fit the model. We will
judge model performance using the RMS error on the test set.

1



A number of the output data entries in the training set have been corrupted (but in a
non-obvious way). You do not know which data points have been corrupted, or how
many, but you can assume no more than 50. You will explore a simple sequential
method to remove the corrupted data points and form a prediction model.

Repeat the following for 50 iterations:

• Create a linear predictor from the training data set.

• Find the data point in the training data set with the largest prediction error.

• Remove the data point from the training data set.

This results in 50 predictors. Plot the test RMS error for them, versus the number of
points removed. Give a guess as to how many of the data points were corrupted, with
justification.

Julia hint. To remove row i from a matrix X and a vector y, use X[setdiff(1:end, i), :]

and y[setdiff(1:end, i)], respectively.

2


