
EE104, Spring 2024 S. Lall and S. Boyd

Homework 2

1. Standardizing Boolean features. Consider a raw input u that is Boolean, i.e., ui ∈
{0, 1}m. We define U as the data matrix

U =


(u1)

T

(u2)
T

...

(un)T

 .
(a) Let pj be the mean of the jth feature over all data points, so p is the m-vector of

feature means. Explain how to compute pj from U . Briefly explain what pj is, in
plain English.

(b) Now consider the standard deviation of each feature, denoted σj, j = 1, . . . ,m.
Explain how to express σj in terms of pj.

(c) Let x = ϕ (u) be the feature mapping that standardizes u, with X ∈ Rn×m the
associated data matrix. Show how to find X.

(d) Give a short Julia function that carries out the standarization. The function takes
as input U and produces X.

2. k-nearest neighbor weights. Let gsnn be the soft nearest neighbor predictor associated
with the data set x1, . . . , xn, y1, . . . , yn. For each x ∈ Rd, gsnn(x) is a weighted average
of the outcomes, i.e.,

gsnn(x) =
n∑

i=1

wiy
i,

where wi are set of nonnegative weights that add up to one. The particular weights
depend on the distances to the data feature vectors, δi = ∥x− xi∥2, i = 1, . . . , n.

Now let gknn be the k-nearest neighbor predictor associated with the same data set.
Show that gknn(x) is also a weighted average of the yi, i = 1, . . . , n, where the weights
are a (different) function of the distances. Describe what these weights are, as a function
of the distances δ1, . . . , δn. You may assume that the distances are unique, i.e., no two
are equal.

Hint. The weights are not given by a formula, as it is in soft nearest neighbor predictor;
they are most easily described using cases (that depend on the distances).

3. Feature engineering for nearest neighbor predictors. Some common feature engineering
transforms have no effect for some types of predictors. Here we examine one of these.

It is very common to add a first feature that always has the value 1. This is done with
the feature engineering transform T (x) = (1, x). How does this feature engineering
mapping affect a k-nearest neighbor or soft nearest neighbor predictor? Justify your
answer.

Hint. How are ∥x− xi∥2 and ∥T (x)− T (xi)∥2 related?

1



4. Faithful embedding of hours of the year. Consider a raw feature that gives the date and
hour, e.g., July 13 4AM. There are 365× 24 = 8760 possible values of this categorical.
We express this as u = (d, h), where d = 1, . . . , 365 is the day of the year, and h =
1, . . . , 24 is the hour of the day. (We can also express the date and hour using the
conventional notation.) We consider a given date/hour to be similar to its neighbors
one hour ahead and one hour behind, as well as the date/hour exactly 24 hours earlier
or later. Thus July 13 4AM is similar to July 13 3AM, July 13 5AM, July 12 4AM,
and July 14 4AM. (For example, you might expect the temperature of similar hours to
be close.) In terms of u, (d, h) is similar to (d, h−1), (d, h+1), (d−1, h) and (d+1, h),
where the index arithmetic is circular, i.e., modulo 365 for d and 24 for h. This means
for example when d = 365 (December 31), we take d+1 to be 1 (January 1), and when
h = 1 (1AM), we take h− 1 to be 24 (midnight).

Suggest a faithful embedding for date/hour values. You can describe it informally or
just draw it; you do not need to come up with any kind of formula. You might want to
use the term ‘torus’ (which you should feel free to look up). Hint. You can get a good
embedding in R3.

5. Validating different feature mappings and different predictors. In this exercise you will
carry out a very common activity in machine learning, comparing two different feature
mappings, and 4 different predictors, using validation.

In feat_valid.json, you will find a 300 × 3 matrix U of raw input data, with rows
(ui)T , with ui ∈ R3, i = 1, . . . , 100, and a 300-vector v with the raw output data. We
will work with y = ψ(v) = v. Partition the data into a training set and a validation set
by randomly assigning 80% of the data set into training and the remaining 20% into a
validation set.

Julia hint. The function shuffle(x) in the Random package can be used to randomly
shuffle an array x.

(a) Using the feature mapping x = ϕ(u) = (u1, u2, u3) to fit a soft nearest neighbor
model for ρ = 0.25, 0.5, 1, 2. Report the train and test RMS errors for each of
these 4 predictors.

(b) Do the same for the feature mapping

ϕ(u) = (u1, u2, u3, u1u2, u2u3, u1u3, u
2
1, u

2
2, u

2
3).

Julia hint. You can implement this feature map in Julia using

phi(U) = [U U[:,1].*U[:,2] U[:,2].*U[:,3] U[:,1].*U[:,3] U.^2].

(c) Which combination of feature mapping and soft nearest neighbor predictor pa-
rameter performs best, on the test set?

2


