
EE104, Spring 2024 S. Lall and S. Boyd

Homework 1

1. The different types of machine learning problems. Determine whether the tasks de-
scribed below involve supervised learning or unsupervised learning. For supervised
learning problems, identify them as regression, classification, or probabilistic classifica-
tion.

(a) Predict the risk of an accident at an intersection, given features such as the time
of day and weather.

(b) Identify cars, bicyclists, and pedestrians in video taken by an autonomous vehicle’s
cameras.

(c) Determine the probability that there is a stop sign in an image.

(d) Generate new road scenarios (generate streets, place stop signs and intersections)
for testing autonomous vehicles in a simulation.

2. Train vs test datasets. Suppose you are building a classifier that identifies cats and dogs.
You have a dataset of 3,000 images containing cats, dogs, or other objects (neither cat
nor dog). You randomly split the data into a 2,500 image training set and a 500 image
test set.

(a) Why is it important to “reserve” some images for the test dataset? (Why shouldn’t
we use all 3,000 images to train the classifier?)

(b) After training your classifier for a while, you observe it performs well on the
training images, but poorly on the test images. What is one possible explanation?

3. Fitting a known function using samples. In this problem you will use various nearest
neighbor methods to predict y ∈ R given x ∈ R, for a simple case in which we know
the exact relation between x and y. (This is never the case in practical prediction
problems.)

Consider the function f(x) = sin(10x) over x ∈ [0, 1].

(a) Randomly sample 30 points xi from [0, 1] using a uniform distribution, and let
yi = f(xi). Plot these data points as dots, along with f as a curve. (To plot
f , evaluate it for 500 points uniformly spaced in [0, 1], i.e., x = (k − 1)/499,
k = 1, . . . , 500.)

(b) On eight separate plots, plot the k-nearest neighbor predictors for k = 1, 2, 3 and
the soft nearest neighbor predictors for ρ =

√
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√
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√
0.001,

√
0.003,√

0.01. Include the 30 data points, shown as dots, in these plots.

(c) RMS error. For each of the eight predictor functions in part (b), evaluate the
RMS error on the 500 uniformly spaced points used to plot the functions, given
by (
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with yk = f((k − 1)/499) and ŷk = g((k − 1)/499), where g is your predictor.

Julia hints.

• rand(N) generates N points from a uniform distribution on [0, 1].

• To generate a uniformly spaced set of N values between a and b (with a < b), use
range(a, stop=b, length=N).

• To apply a function f : R → R elementwise to a vector x, use f.(x).

4. Polynomial embedding. You are given raw data (u, v) with u ∈ R3 and v ∈ R. We
embed v as y = v and u as x = ϕ(u). We will use a linear regression model:

ŷ = xT θ = ϕ(u)T θ,

with θ ∈ Rd. Your job is to find an appropriate embedding function ϕ : R3 → Rd.

An expert on the data and associated application believes that a polynomial of u will
give a good model of v. Specifically, she believes that a good prediction model can be
found as a polynomial of degree no more than 3, with degree in each component ui no
more than 2. We describe these terms below.

A polynomial of a vector u ∈ R3 is a linear combination of terms up
1u

q
2u

r
3, called

monomials. p, q, and r are nonnegative integers, called the degree of the monomial in
u1, u2, and u3, respectively. The degree of the monomial up

1u
q
2u

r
3 is p+ q + r.

The degree of a polynomial of u is the maximum of the degrees of its monomials, and
its degree in each ui is the maximum of the degrees of its monomials in ui. For example,
the polynomial 5.7 + u2

1u2 − 3.2u3
1u

2
2u3 + 1.3u3 has degree 6, degree 3 in u1, degree 2 in

u2, and degree 1 in u3.

Suggest an appropriate embedding ϕ, based on the expert’s advice. Hint : d = 17.

5. Confidence set for a probabilistic classifier. We consider a probabilistic classifier that
predicts the probabilities π1, . . . , πk ofK possible outcomes, labeled k = 1, . . . , K. (The
probabilities π1, . . . , πk are nonnegative and sum to one.)

(a) Hard classifier. (This is another term for a non-probabilistic classifier. A proba-
bilistic classifier is sometimes called a soft classifier.) Suppose you want a hard
classifier that guesses just one of the outcomes. How would you choose the out-
come to guess, given the probabilistic classifier output π1, . . . , πK?

(b) Classifier confidence set. The 90% confidence set associated with the probabilistic
classifier output π1, . . . , πK is the smallest subset of the possible outcomes 1, . . . , K
that has probability at least 90%. Explain how to find the 90% confidence set from
the probabilistic classifier output π1, . . . , πK . (A short description is fine.)
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