Least Squares Linear Regression

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Least squares linear regression

- linear predictor or model \(\hat{y} = g_\theta(x) = \theta^T x \)
- \(\theta \in \mathbb{R}^d \) is the model parameter
- we’ll use square loss function \(\ell(\hat{y}, y) = (\hat{y} - y)^2 \)
- empirical risk is MSE
 \[
 \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^T x^i - y^i)^2
 \]
- ERM: choose model parameter \(\theta \) to minimize MSE
Least squares formulation

- express MSE in matrix notation as

\[\frac{1}{n} \sum_{i=1}^{n} (\theta^T x^i - y^i)^2 = \frac{1}{n} \| X\theta - y \|^2 \]

where \(X \in \mathbb{R}^{n \times d} \) and \(y \in \mathbb{R}^n \) are

\[
X = \begin{bmatrix}
(x^1)^T \\
\vdots \\
(x^n)^T
\end{bmatrix}, \quad y = \begin{bmatrix}
y^1 \\
\vdots \\
y^n
\end{bmatrix}
\]

- ERM is a least squares problem: choose \(\theta \) to minimize \(\| X\theta - y \|^2 \)

(factor 1/n doesn’t affect choice of \(\theta \))
Least squares solution

(see *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares*)

- assuming X has linearly independent columns (which implies $n \geq d$), there is a unique optimal θ

\[
\theta^* = (X^T X)^{-1} X^T y = X^\dagger y
\]

- standard algorithm:
 - compute QR factorization $X = QR$
 - compute $Q^T y$
 - solve $R\theta^* = Q^T y$ by back substitution

- in Julia: `theta_opt = X\y`

- complexity is $2d^2 n$ flops
Data matrix

- the $n \times d$ matrix

$$X = \begin{bmatrix} (x^1)^T \\ \vdots \\ (x^n)^T \end{bmatrix}$$

is called the data matrix

- ith row of X is ith feature vector, transposed
- j column of X gives values of jth feature x_j across our data set
- X_{ij} is the value of jth feature for the ith data point
Constant fit

- The simplest feature vector is constant: \(x = \phi(u) = 1 \) (doesn’t depend on \(u \! \)!

- Corresponding model is a constant function: \(g(x) = \theta_1 \)

- Data matrix is \(X = 1_n \)

- So \(X^\dagger = (X^T X)^{-1} X^T = (1/n) 1^T \) and

\[
\theta^* = X^\dagger y = 1^T y / n = \text{avg}(y)
\]

- The average of the outcome values is the best constant model (for square loss)

- Optimal RMSE is standard deviation of outcome values

\[
\left(\sum_{i=1}^{n} (\text{avg}(y) - y^i)^2 \right)^{1/2}
\]
Regression

- with $u \in \mathbb{R}^{d-1}$: $x = \phi(u) = (1, u)$
- same as $x_1 = 1$ (the first feature is constant)
- predictor has form
 \[
 \hat{y} = \theta^T x = \theta_1 + \theta_{2:d}^T u
 \]
 an affine function of u
Straight line fit

- with $u \in \mathbb{R}$, $x = (1, u) \in \mathbb{R}^2$
- model is $\hat{y} = g(x) = \theta_1 + \theta_2 u$
- this model is called straight-line fit
- when u is time, it’s called the trend line
- when u is the whole market return, and y is an asset return, θ_2 is called ‘β’
data from Federal Highway Administration road monitoring stations

total number of vehicle-miles traveled per year in U.S.
Constant versus straight-line fit models

- for the constant model, we choose θ_1 to minimize

$$\frac{1}{n} \sum_{i=1}^{n} (\theta_1 - y^i)^2$$

- for the straight-line model, we choose (θ_1, θ_2) to minimize

$$\frac{1}{n} \sum_{i=1}^{n} (\theta_1 + \theta_2 u^i - y^i)^2$$

- for optimal choices, this value is less than or equal to the one above

- so the RMS error of the straight-line fit is no more than the standard deviation
Example: Diabetes

- u consists of 10 explanatory variables (age, bmi, ...)
- with constant feature $x_1 = 1, x \in \mathbb{R}^{11}$
- outcome y is measure of diabetes progression over after 1 year
- we’d like to predict y given the features
- constant model (mean) is $g(x) = 152$, with MSE 5930, RMS error 77
Example: Diabetes

scatter plots of each explanatory variable versus y

data from https://web.stanford.edu/~hastie/Papers/LARS/
Straight-line fits using each explanatory variable

- a separate regression of each variable against \(y \)
- best single predictor is BMI, with MSE 3890
left-hand plot shows optimal predictor $\hat{y} = -118 + 10.2 \text{ bmi}$

right-hand plot shows y versus \hat{y}

ideal plot would have all points on the diagonal
Regression with all explanatory variables

- left-hand plot uses only BMI to predict y, achieves loss ≈ 3890
- right-hand plot uses all features, achieves loss ≈ 2860
- model is

$$g(x) = -335 - 0.0364 \text{ age} - 22.9 \text{ sex} + 5.6 \text{ bmi} + 1.12 \text{ bp} - 1.09s_1$$
$$+ 0.746s_2 + 0.372s_3 + 6.53s_4 + 68.5s_5 + 0.28s_6$$