EE104 S. Lall and S. Boyd

Prox-Gradient Method

Sanjay Lall and Stephen Boyd

EE104 Stanford University Prox-gradient method

Minimizing composite functions

- lacktriangle want to minimize F(heta) = f(heta) + g(heta) (called a *composite function*)
- ightharpoonup f is differentiable, but g need not be
- lacktriangle example: minimize $\mathcal{L}(heta) + \lambda r(heta)$, with $r(heta) = || heta||_1$
- ▶ we'll see idea of gradient method extends directly to composite functions

Selective linearization

 \blacktriangleright at iteration k, linearize f but not g

$$\hat{F}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k) + g(\theta)$$

- lacktriangle want $\hat{F}(heta; heta^k)$ small, but with heta near $heta^k$
- ▶ choose θ^{k+1} to minimize $\hat{F}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta \theta^k||_2^2$, with $h^k > 0$
- same as minimizing

$$g(\theta) + \frac{1}{2h^k} ||\theta - (\theta^k - h^k \nabla f(\theta^k))||^2$$

- ightharpoonup for many 'simple' functions g, this minimization can be done analytically
- \blacktriangleright this iteration from θ^k to θ^{k+1} is called prox-gradient step

4

Prox-gradient iteration

- prox-gradient iteration has two parts:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla f(\theta^k)$
 - 2. prox step: choose θ^{k+1} to minimize $g(\theta) + \frac{1}{2h^k} ||\theta \theta^{k+1/2}||_2^2$

$$(heta^{k+1/2}$$
 is an intermediate iterate, in between $heta^k$ and $heta^{k+1})$

- ▶ step 1 handles differentiable part of objective, i.e., f
- ▶ step 2 handles second part of objective, i.e., g

Proximal operator

ightharpoonup given function $q: \mathbb{R}^d o \mathbb{R}$, and $\kappa > 0$,

$$\mathbf{prox}_{q,\kappa}(v) = \operatorname*{argmin}_{ heta} \left(q(heta) + rac{1}{2\kappa} || heta - v||_2^2
ight)$$

is called the *proximal operator* of q at v, with parameter κ

▶ the prox-gradient step can be expressed as

$$heta^{k+1} = \mathbf{prox}_{g,h^k}(heta^{k+1/2}) = \mathbf{prox}_{g,h^k}(heta^k - h^k
abla f(heta^k))$$

▶ hence the name prox-gradient iteration

How to choose step length

lacktriangle same as for gradient, but using F(heta) = f(heta) + g(heta)

a simple scheme:

$$ightharpoonup$$
 if $F(heta^{k+1}) > F(heta^k)$, set $h^{k+1} = h^k/2$, $heta^{k+1} = heta^k$ (a rejected step)

$$lacksquare$$
 if $F(heta^{k+1}) \leq F(heta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)

▶ reduce step length by half if it's too long; increase it 20% otherwise

Stopping criterion

stopping condition for prox-gradient method:

$$\left\|\nabla f(\theta^{k+1}) - \frac{1}{h^k}(\theta^{k+1} - \theta^{k+1/2})\right\|_2 \le \epsilon$$

- lacksquare analog of $||\nabla f(heta^{k+1})||_2 \leq \epsilon$ for gradient method
- ▶ second term $-\frac{1}{h^k}(\theta^{k+1} \theta^{k+1/2})$ serves the purpose of a gradient for g (which need not be differentiable)

8

Prox-gradient method summary

choose an initial
$$heta^1 \in \mathbf{R}^d$$
 and $h^1 > 0$ (e.g., $heta^1 = 0$, $h^1 = 1$)

for
$$k = 1, 2, \ldots, k^{\mathsf{max}}$$

- 1. gradient step. $\theta^{k+1/2} = \theta^k h^k \nabla f(\theta^k)$
- 2. prox step. $\theta^{\text{tent}} = \operatorname{argmin}_{\theta} \left(g(\theta) + \frac{1}{2h^k} ||\theta \theta^{k+1/2}||_2^2 \right)$
- 3. if $F(\theta^{\text{tent}}) \leq F(\theta^k)$,
 - (a) set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
 - (b) quit if $\left\| \nabla f(\theta^{k+1}) \frac{1}{h^k} (\theta^{k+1} \theta^{k+1/2}) \right\|_2 \le \epsilon$
- 4. else set $h^k := 0.5h^k$ and go to step 1

Prox-gradient method convergence

- prox-gradient method finds a stationary point
 - suitably defined for non-differentiable functions
 - ▶ assuming some technical conditions hold

- ▶ for convex problems
 - prox-gradient method is non-heuristic
 - lacktriangleright for any starting point $heta^1$, $F(heta^k) o F^\star$ as $k o\infty$

- ▶ for non-convex problems
 - prox-gradient method is heuristic
 - lacksquare we can (and often do) have $F(heta^k)
 eg F^\star$

Prox-gradient for regularized ERM

Prox-gradient for sum squares regularizer

- lacksquare let's apply prox-gradient method to $F(heta) = \mathcal{L}(heta) + \lambda || heta||_2^2$
 - $ightharpoonup f(heta) = \mathcal{L}(heta)$
- ▶ in prox step, we need to minimize $\lambda \theta_i^2 + \frac{1}{2h^k} (\theta_i \theta_i^{k+1/2})^2$ over θ_i
- ightharpoonup solution is $\theta_i = \frac{1}{1+2\lambda h^k} \theta_i^{k+1/2}$
- lacksquare so prox step just shrinks the gradient step $heta^{k+1/2}$ by the factor $rac{1}{1+2\lambda h^k}$
- prox-gradient iteration:
 - 1. gradient step: $heta^{k+1/2} = heta^k h^k
 abla \mathcal{L}(heta^k)$
 - 2. prox step: $\theta^{k+1} = \frac{1}{1+2\lambda h^k} \theta^{k+1/2}$

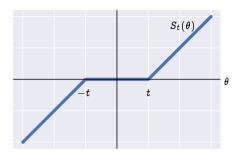
Prox-gradient for ℓ_1 regularizer

- lacktriangleright let's apply prox-gradient method to $F(heta) = \mathcal{L}(heta) + \lambda || heta||_1$
 - $ightharpoonup f(\theta) = \mathcal{L}(\theta)$
- ▶ in prox step, we need to minimize $\lambda |\theta_i| + \frac{1}{2h^k} (\theta_i \theta_i^{k+1/2})^2$ over θ_i
- solution is

$$heta_i^{k+1} = \left\{ egin{array}{ll} heta_i^{k+1/2} - 2\lambda h^k & heta_i^{k+1/2} > 2\lambda h^k \ 0 & | heta_i^{k+1/2}| \leq 2\lambda h^k \ heta_i^{k+1/2} + 2\lambda h^k & heta_i^{k+1/2} < -2\lambda h^k \end{array}
ight.$$

- ▶ called soft threshold function
- lacksquare sometimes written as $heta_i^{k+1} = S_{2\lambda h^k}(heta_i^{k+1/2}) = \operatorname{sign}(heta_i)(| heta_i| 2\lambda h^k)_+$

Soft threshold function

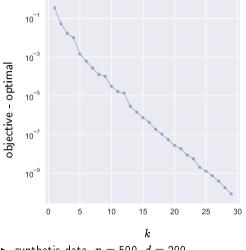


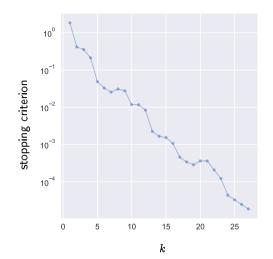
- **\triangleright** prox-gradient iteration for regularized ERM with ℓ_1 regularization:
 - 1. gradient step: $heta^{k+1/2} = heta^k h^k
 abla \mathcal{L}(heta^k)$
 - 2. prox step: $\theta^{k+1} = S_{2\lambda h^k}(\theta_i^{k+1/2})$
- ▶ the soft threshold step shrinks all coefficients
- ▶ and sets the small ones to zero

Prox-gradient step for nonnegative regularizer

- ▶ let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + r(\theta)$, where $r(\theta) = 0$ for $\theta \geq 0$, ∞ otherwise
 - $ightharpoonup f(\theta) = \mathcal{L}(\theta)$
- lacktriangle in prox step, we need to minimize $q(\theta_i) + rac{1}{2h^k}(\theta_i \theta_i^{k+1/2})^2$ over θ_i
- lacksquare solution is $heta_i = \left(heta_i^{k+1/2}
 ight)_+$
- lacktriangledown so prox step just replaces the gradient step $heta_i^{k+1/2}$ with its positive part
- prox gradient iteration:
 - 1. gradient step: $heta^{k+1/2} = heta^k h^k
 abla \mathcal{L}(heta^k)$
 - 2. prox step: $\theta^{k+1} = \left(\theta^{k+1/2}\right)_+$

Example





- ightharpoonup synthetic data, n=500, d=200
- ▶ lasso (square loss, ℓ_1 regularization), $\lambda = 0.1$