EE104 S. Lall and S. Boyd

Probabilistic Classification

Sanjay Lall and Stephen Boyd

EE104 Stanford University Point and list classifiers

Point classifiers

- ightharpoonup a classifier predicts one value \hat{v} , given u
- ▶ sometimes called a *point classifier* or *point predictor*, since it makes just one guess

- lacktriangleright in this lecture we'll study classifiers that produce more than just a single guess, given u
 - ightharpoonup an ordered list of guesses, e.g., \hat{v}^{top} , \hat{v}^{2nd} , \hat{v}^{3rd} (first, second, third guesses)
 - ightharpoonup a probability distribution on $\mathcal{V},\ e.g.,\ 15\%$ rain, 85% shine

List classifiers

- ▶ a *list classifier* produces an ordered list, such as \hat{v}^{top} , \hat{v}^{2nd} , \hat{v}^{3rd}
- ▶ we interpret as our top, second, and third guesses
- ▶ (we show three here, but any number, or a variable number, is possible)
- we're happiest when $v=\hat{v}^{\text{top}}$, i.e., our top guess is correct, a bit less happy when $v=\hat{v}^{\text{2nd}}$, etc.

- common application: recommendation system
 - $lackbox{} u \in \mathcal{U}$ is a user query, $v \in \mathcal{V}$ is the item a user wants
 - ▶ list classifier gives our top 10 (ordered) guesses

Nearest-neighbor un-embedding for a list classifier

- ▶ we can generalize nearest-neighbor un-embedding to give a list classifier
- lacksquare start with embedding $\psi_i = \psi(v_i) \in \mathsf{R}^m$
- lacksquare a predictor guesses $\hat{y} \in \mathbf{R}^m$
- $lackbox{} \hat{v}^{\mathsf{top}}$ is the closest representative ψ_i to \hat{y}
- lacksquare \hat{v}^{2nd} is the second closest representative ψ_i to \hat{y} , etc.

Probabilistic classifiers

Probability distribution on $\mathcal V$

- ightharpoonup a probability distribution on $\mathcal V$ is a function $p:\mathcal V o\mathsf R$
- ightharpoonup p(v) is the probability of the value v
- $lackbox{ we have } p(v) \geq 0 \ ext{for all } v \in \mathcal{V} \ ext{and} \ \sum_{v \in \mathcal{V}} p(v) = 1$
- ightharpoonup example: with $V = \{\text{RAIN, SHINE}\}$, p(RAIN) = 0.15, p(SHINE) = 0.85

- lacktriangledown can also represent distribution p as a K-vector, with $p_i=p(v_i),\ i=1,\ldots,K$
- lacktriangle in vector notation, $p \geq 0$ (elementwise) and $\mathbf{1}^T p = 1$

Probabilistic classifiers

- lacktriangleright a probabilistic classifier produces a probability distribution \hat{p} on \mathcal{V} , given u
- ightharpoonup we write this as $\hat{p}=G(u)$
- this notation means
 - $lackbox{ }G$ is a function that takes $u\in\mathcal{U}$ and returns a distribution (which is itself a function)
 - ightharpoonup if $\hat{p}=G(u)$ then \hat{p} is a function
 - lacktriangle we can call the function; $\hat{p}(v_i)$ is the probability that $v=v_i$, when the independent variable is u
 - ightharpoonup we can also write this as $G(u)(v_i)$
- lacktriangleright at any point $u\in\mathcal{U}$, calling the predictor G returns the probability distribution \hat{p}
- lacksquare we can evaluate \hat{p} at any $v_i \in \mathcal{V}$

Point classifier as a probabilistic classifier

- ▶ a point classifier can be considered a special case of a probabilistic classifier
- \blacktriangleright if point classifier predicts $\hat{v} \in \mathcal{V}$, associated probabilistic classifier returns \hat{p} , with

$$\hat{p}(v) = egin{cases} 1 & ext{if } v = \hat{v} \ 0 & ext{otherwise} \end{cases}$$

- ightharpoonup i.e., we return a distribution that has 100% probability on our point guess \hat{v} , and 0% on others
- we'll see this is likely a poor probabilistic classifier

Point classifier from a probabilistic classifier

- ▶ conversely, we can construct a point classifier from a probabilistic classifier
- ightharpoonup if probabilistic classifier gives \hat{p} , our point classifier guesses

$$\hat{v} = rgmax_{v \in \mathcal{V}} \hat{p}(v)$$

i.e., the value in $\mathcal V$ that has highest probability

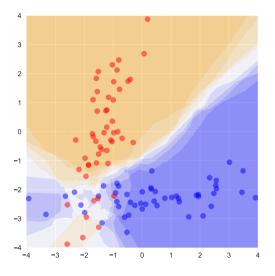
- ▶ called a *maximum likelihood classifier*
- extends to a list classifier, by giving values sorted by probability, largest to smallest

Types of probabilistic classifiers

- tree-based probabilistic classifiers
 - ▶ decision tree with nodes labeled as feature and threshold
 - leaves contain distributions \hat{p}
- nearest-neighbor probabilistic classifiers
 - ightharpoonup find k nearest neighbors of x to x^i
 - $lackbox{ }$ use empirical distribution of v^i among these as \hat{p}
- ▶ later we'll see probabilistic classifiers based on linear or neural network predictors

k-nearest neighbors based probabilistic classifier

- lacksquare embed u^i as $x^i = \phi(u^i)$
- lacktriangle given u, find k nearest neighbors of $x=\phi(u)$
- \blacktriangleright guess \hat{p} as the empirical distribution of v for these neighbors
- ightharpoonup here k=8



Performance metrics

Judging list classifiers

- error rates versus list rank, e.g., on a test data set
 - $ightharpoonup v = \hat{v}^{\mathsf{top}}$ (i.e., our top guess is correct) for 68% of samples
 - $m{v} \in \{\hat{v}^{ ext{top}}, \hat{v}^{2 ext{nd}}\}$ (i.e., true value is among our top two guesses) for 79% of samples
 - $v \in \{\hat{v}^{top}, \hat{v}^{2nd}, \hat{v}^{3rd}\}\ (i.e., the true value is one of our top three guesses) for 85% of samples$

- average score on a test data set
 - ightharpoonup three points for $v=\hat{v}^{ ext{top}}$ (top guess correct)
 - two points if $v = \hat{v}^{2nd}$ (second guess correct)
 - one point if $v = \hat{v}^{3rd}$ (third guess correct)
 - ightharpoonup zero points if v is not in your list (no guesses correct)

Judging a probabilistic classifier

- $lackbox{}$ consider a data pair u,v with prediction $\hat{p}=G(u)$
- lacktriangle we'd like to have $\hat{p}(v) = G(u)(v)$ large, i.e., we assign high probability to the actual value
- for rain / shine prediction example:
 - lacktriangle we want $\hat{p}({ ext{RAIN}})$ large when $v={ ext{RAIN}}$
 - ightharpoonup we want $\hat{p}({ t RAIN})$ small when $v={ t SHINE}$
- ▶ there are several ways to formalize this
- ▶ we'll focus on most common formalization, based on *log-likelihood*

Likelihood

- lacktriangle we have a probabilistic classifier $\hat{p}=G(u)$, and data set $u^1,\ldots,u^n,\ v^1,\ldots,v^n$
- lacktriangle at the ith data point, the predicted probability distribution is $\hat{p}^i = G(u^i)$
- lacktriangleright assuming outcomes v^i are independent with distributions \hat{p}^i , probability of observing these outcomes is

$$\mathsf{prob}(v^1, v^2, \dots, v^n) = \prod_{i=1}^n \hat{p}^i(v^i)$$

- ▶ this probability is called the *likelihood* of $\hat{p}^1, \dots, \hat{p}^n$; we'd like it to be high
- > a fundamental measure of how well the predicted distribution matches the data
- lacktriangle we can compare two probabilistic classifiers G and $ilde{G}$ by their associated likelihood on test data

Negative log likelihood

- ▶ it's more convenient to work with log probabilities, since the likelihood is a product
- ▶ the *negative log likelihood* of a probabilistic classifier on a data set is

$$-\log \mathsf{prob}(v^1,v^2,\ldots,v^n) = -\log \prod_{i=1}^n \hat{p}^i(v^i) = -\sum_{i=1}^n \log \hat{p}^i(v^i)$$

- ▶ the negative log likelihood is nonnegative; we'd like it to be small
- ▶ to compare likelihood on different size data sets (e.g., train and test) we use the average negative log likelihood

$$\mathcal{L} = -rac{1}{n} \sum_{i=1}^n \log \hat{p}^i(v^i)$$

Constant probabilistic classifier

Constant probabilistic classifier

- consider a constant probabilistic classifier
- ightharpoonup i.e., distribution \hat{p} does does not depend on u (which need not even exist)
- ightharpoonup given data set v^1, \ldots, v^n , guess distribution \hat{p} on \mathcal{V}
- ightharpoonup suppose we choose \hat{p} to minimize average negative log likelihood

$$-\frac{1}{n}\sum_{i=1}^n\log\hat{p}(v^i)$$

(subject to
$$\hat{p}(v) \geq 0$$
 for all $v \in \mathcal{V}$ and $\sum_{v \in \mathcal{V}} \hat{p}(v) = 1$)

▶ the *empirical distribution* of the data is

$$q(v)=$$
 fraction of v^j that have value v

- lacktriangle we'll see: the optimal constant probablistic classifier is $\hat{p}=q$
- ightharpoonup . . . a very sensible prediction of \hat{p}

Cross entropy

we can express average negative log likelihood as

$$-rac{1}{n} \sum_{i=1}^n \log \hat{p}(v^i) = -\sum_{j=1}^K q(v_j) \log \hat{p}(v_j)$$

- ▶ the quantity $H(q,\hat{p}) = -\sum_{j=1}^{K} q(v_j) \log \hat{p}(v_j)$ is called the *cross entropy* of \hat{p} relative to q
- lacksquare compare with the entropy $H(p) = -\sum_{k=1}^K p(v_k) \log p(v_k)$

Kullback-Leibler divergence

For p, q two probability distributions, the Kullback-Leibler divergence is

$$d_{kl}(q,p) = H(q,p) - H(q)$$

▶ $d_{kl}(q, p) \ge 0$ for all distributions p, q, because

$$d_{kl}(q,p)=-\sum_{j=1}^K q_j\log(p_j/q_j)$$
 $\geq -\sum_{j=1}^K q_j(p_j/q_j-1)=0$ because $\log x \leq x-1$ for all $x>0$

ightharpoonup can be shown even if some $q_j=0$

Constant predictor

lacktriangle the optimal constant probabistic classifier is the \hat{p} that minimizes $H(q,\hat{p})$, which is

$$H(q,\hat{p}) = d_{kl}(q,\hat{p}) + H(q)$$

lacksquare optimal choice is $\hat{p}=q$, then $H(q,\hat{p})=H(q)$

Summary

Summary

- lacktriangle a point classifier makes a single guess of v, given u
- lacktriangleright a probabilistic classifier guesses a probability distribution on ${\cal V}$, given u
- lacktriangle we judge a probabilistic classifier by its average log likelihood on test data