Predictors

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Predictors
Data fitting

- We think $y \in \mathbb{R}^m$ and $x \in \mathbb{R}^d$ are (approximately) related by
 \[y \approx f(x) \]

- x is called the *independent variable* or *feature vector*

- y is called the *outcome* or *response* or *target* or *label* or *dependent variable*

- Very often $m = 1$, *i.e.*, the outcome is scalar

- y is something we want to predict, given x

- We don’t know the ‘true’ relationship between x and y (and there may not be one)
Features

x is a vector of features:

- documents
 - x is word count histogram for a document
- patient data
 - x are patient attributes, test results, symptoms
- customers
 - x is purchase history and other attributes of a customer
we use u to denote the raw input data, such as a vector, word or text, image, video, audio, …

$x = \phi(u)$ is the corresponding feature vector

the function ϕ is called the embedding or feature function or feature mapping

ϕ can range from very simple to quite complicated

often we take $\phi(u)_1 = x_1 = 1$, the constant feature

similarly, the raw output data v can be featurized as $y = \psi(v)$

(much more on these ideas later)
Data and prior knowledge

- we are given data $x^1, \ldots, x^n \in \mathbb{R}^d$ and $y^1, \ldots, y^n \in \mathbb{R}^m$
- (x^i, y^i) is the ith data pair or observation or example
- collectively we call x^1, \ldots, x^n and y^1, \ldots, y^n a data set
- we also (might) have prior knowledge about what f might look like
 - e.g., f is smooth or continuous: $f(x) \approx f(\hat{x})$ when x is near \hat{x}
 - or we might know $y \geq 0$
we seek a predictor or model $g : \mathbb{R}^d \rightarrow \mathbb{R}^m$

for feature vector x, our prediction (of y) is $\hat{y} = g(x)$

predictor g is chosen based on both data and prior knowledge

in terms of raw data, our predictor is

$$\hat{v} = \psi^{-1}(g(\phi(u)))$$

(with a slight variation when ψ is not invertible)

$\hat{y}^i \approx y^i$ means our predictor does well on ith data pair

but our real goal is to have $\hat{y} \approx y$ for (x, y) pairs we have not seen
Parametrized predictors

- many predictors have the form \(\hat{y} = g(x, \theta) \), also written as \(\hat{y} = g_\theta(x) \)
- the function \(g \) fixes the \textit{structure} or \textit{form} of the predictor
- \(\theta \in \mathbb{R}^p \) is a \textit{parameter} (vector) for the prediction model
- choosing a particular \(\theta \in \mathbb{R}^p \) is called \textit{tuning} or \textit{training} or \textit{fitting} the model
- a \textit{learning algorithm} is a recipe for choosing \(\theta \) given data
- example: \textit{linear regression model}
 - \(\hat{y} = g_\theta(x) = \theta_1 x_1 + \cdots + \theta_d x_d \)
 - you can fit a linear regression model using least squares
 - (and other methods too; much more on that later)
Nearest neighbor predictors
Nearest neighbor predictor

- we are given data set \(x^1, \ldots, x^n, y^1, \ldots, y^n \)
- **nearest neighbor predictor:**
 - given \(x \), find its nearest neighbor \(x^i \) among given data
 - then predict \(\hat{y} = g(x) = y^i \)
- extremely intuitive
- parameter is full data set: \(\theta = (x^1, \ldots, x^n, y^1, \ldots, y^n) \)
- ‘training’ is easy; it requires no computation
- \(g \) is a piecewise constant function of \(x \), since \(g(x) = y^i \) when \(x \) is closer to \(x^i \) than the other \(x^j \)s
Example

- dots show data points \((x^i, y^i)\), \(x^i \in \mathbb{R} (d = 1)\)
- line shows \(\hat{y} = g(x)\)
Example

dots show data points \((x^i, y^i), x^i \in \mathbb{R}^2\) \((d = 2)\), red surface is \(\hat{y} = g(x)\)
k-nearest neighbor predictor

- given x, find its k nearest neighbors x^{i_1}, \ldots, x^{i_k} among given data

- **k-nearest neighbor predictor** (k-NN) predicts the average of the associated outcomes

$$\hat{y} = g(x) = \frac{1}{k}(y^{i_1} + \cdots + y^{i_k})$$

- a useful generalization of nearest neighbor predictor

- many variations, e.g.,
 - use a weighted average to form \hat{y}
 - pre-process by clustering the original data set
Example: $k = 2$
Soft nearest neighbor predictor

- Prediction is weighted average, \(\hat{y} = g(x) = \sum_{i=1}^{n} w^i y^i \), with weights

\[
w^i = \frac{e^{-\|x - x^i\|_2^2 / \rho^2}}{\sum_{j=1}^{n} e^{-\|x - x^j\|_2^2 / \rho^2}}
\]

that depend on \(x \)

- \(\rho > 0 \) is a parameter, a characteristic length

- Weight \(w^i \) is larger when \(x \) is near \(x^i \)

- For small \(\rho \), this reverts to nearest neighbor predictor
Example

\[\rho = 2 \]

\[\rho = 1 \]
Example

\[\rho = 0.5 \]

nearest neighbor
Linear predictors
Linear predictor

- A linear predictor has the form $g(x, \theta) = \theta^T x$
- For $m = 1$ (scalar y), parameter is a vector $\theta \in \mathbb{R}^d$
- For $m > 1$ (vector y), parameter is a matrix $\theta \in \mathbb{R}^{d \times m}$
- Also called a *linear regression model*
- Prediction is a linear combination of features
 \[\hat{y} = g(x) = \theta_1 x_1 + \cdots + \theta_d x_d \]
 - For $m = 1$, θ_i are entries of θ
 - For $m > 1$, θ_i^T are rows of θ
- There are many ways to fit a linear regression model to data, including least squares
Interpreting a linear predictor

- we consider scalar y ($m = 1$); similar results hold for vector y
- linear predictor has form
 $$\hat{y} = g(x) = \theta_1 x_1 + \cdots + \theta_d x_d$$
- θ_3 is the amount prediction $\hat{y} = g(x)$ increases when x_3 increases by 1
 - particularly interpretable when x_3 is Boolean (only takes values 0 or 1 or -1 and 1)
- $\theta_7 = 0$ means that the prediction does not depend on x_7
- θ small means predictor is insensitive to changes in x:
 $$|g(x) - g(\bar{x})| = |\theta^T x - \theta^T \bar{x}| = |\theta^T (x - \bar{x})| \leq ||\theta||_2 ||x - \bar{x}||_2$$
Affine predictor

- in many cases the first feature is constant, \(i.e., x_1 = 1 \)
- the linear predictor \(g \) is then an **affine function** of \(x_{2:d} \), \(i.e., \) linear plus a constant

\[
g(x) = \theta^T x = \theta_1 + \theta_2 x_2 + \cdots + \theta_d x_d
\]

- \(\theta_1 \) is called the **offset** or **constant term** in the predictor
- \(\theta_1 \) is the prediction when all features (except the constant) are zero
Polynomial predictor

- with appropriate embedding of u, can get nonlinear function of u with a linear predictor of x
- common example with $u \in \mathbb{R}$:
 $$x = \phi(u) = (1, u, u^2, \ldots, u^{d-1})$$
 ($\phi : \mathbb{R} \rightarrow \mathbb{R}^d$ is called polynomial or power embedding)
- linear predictor has form
 $$\hat{y} = \theta^T x = \theta_1 + \theta_2 u + \theta_3 u^2 + \cdots + \theta_d u^{d-1}$$
- this is a linear function of x, but a polynomial function of u
- (much more on this topic later)
Example

Quadratic predictor

Cubic predictor
Tree-based predictors
Tree-based predictor

- predictor represented by partially developed boolean tree
- non-leaf nodes associated with an index i and threshold t
- each leaf has a value \hat{y}
- parameter θ encodes tree, thresholds, leaf values
- predictor is piecewise constant function of x, interpretable when the tree is small enough
Tree-based predictor

Example
Neural network predictors
Neural network layers

- a (feedforward) neural network predictor consists of a composition of functions
 \[\hat{y} = g^3(g^2(g^1(x))) \]
 (we show three here, but we can have any number)
- written as \(g = g^3 \circ g^2 \circ g^1 \) (the symbol \(\circ \) means function composition)
- each \(g^i \) is called a layer; here we have 3 layers
- we can write the predictor \(\hat{y} = g^3(g^2(g^1(x))) \) as
 \[
 z^1 = g^1(x), \quad z^2 = g^2(z^1), \quad \hat{y} = g^3(z^2)
 \]
- the vector \(z^i \in \mathbb{R}^{d^i} \) is called the activation or output of layer \(i \)
- we sometimes write \(z^0 = x, d^0 = d, \) and \(z^3 = \hat{y}, d^3 = m \)
 (so the predictor input \(x \) and predictor output \(y \) are also considered activations of layers)
- sometimes visualized as flow graph
Layer functions

- each layer g^i is a composition of a function h with an affine function
 \[g^i(z^{i-1}) = h(\theta_i^T(1, z^{i-1})) \]
- the matrix $\theta_i \in \mathbb{R}^{(d_{i-1}+1) \times d_i}$ is the **parameter** (also called **weights**) for layer i
- the function $h : \mathbb{R} \to \mathbb{R}$ is a scalar **activation function**, which acts elementwise on a vector argument (i.e., it is applied to each entry of a vector)
- common activation functions include
 - $h(x) = (x)_+ = \max(x, 0)$, called **ReLu** (rectified linear unit)
 - $h(x) = e^x / (1 + e^x)$, called **sigmoid function**
- an M-layer neural network predictor is parameterized by $\theta = (\theta_1, \ldots, \theta_M)$ (for M layers)
Neural networks are often represented by network diagrams:

- Each vertex is a component of an activation.
- Edges are individual weights or parameters.

Example above has 3 layers, with $d^0 = 2$, $d^1 = 4$, $d_2 = 2$, $d_4 = 1$.
Example neural network predictor

\[\theta_1 = \begin{bmatrix}
0.80 & 0.10 & 1.30 & 1.20 \\
-0.50 & 0.70 & 0.80 & 2.90 \\
-1.80 & 0.20 & -1.50 & -0.60
\end{bmatrix} \]

\[\theta_2 = \begin{bmatrix}
1.40 & 1.10 \\
-0.10 & -0.90 \\
0.50 & 0.20 \\
-0.40 & 0.90 \\
-0.40 & -0.10
\end{bmatrix} \]

\[\theta_3 = \begin{bmatrix}
0.90 \\
0.70 \\
0.50
\end{bmatrix} \]
Neural network predictors

- neural network described above is called a *feedforward neural network* or *multi-layer preceptron*
- there are many variations on this basic neural network
- you'll see them in other classes
Summary
a predictor is a function \(g : \mathbb{R}^d \rightarrow \mathbb{R}^m \) meant to predict the outcome \(y \), given feature vector \(x \)

- there are many types of predictors
 - nearest-neighbor
 - tree
 - linear
 - neural networks
 - and many others

- most predictors are parametrized, with the form \(g_\theta(x) \)
 - \(g \) fixes the form of the predictor
 - \(\theta \in \mathbb{R}^p \) are parameters that we choose to fit the data, which is called training the predictor
 - we'll see later how training is done