
EE104 S. Lall and S. Boyd

Predictors

Sanjay Lall and Stephen Boyd

EE104

Stanford University

1

Predictors

2

Data �tting

I we think y 2 Rm and x 2 Rd are (approximately) related by

y � f(x)

I x is called the independent variable or feature vector

I y is called the outcome or response or target or label or dependent variable

I very often m = 1, i.e., the outcome is scalar

I y is something we want to predict, given x

I we don't know the `true' relationship between x and y (and there may not be one)

3

Features

x is a vector of features:

I documents

I x is word count histogram for a document

I patient data

I x are patient attributes, test results, symptoms

I customers

I x is purchase history and other attributes of a customer

4

Where features come from

I we use u to denote the raw input data, such as a vector, word or text, image, video, audio, . . .

I x = �(u) is the corresponding feature vector

I the function � is called the embedding or feature function or feature mapping

I � can range from very simple to quite complicated

I often we take �(u)1 = x1 = 1, the constant feature

I similarly, the raw output data v can be featurized as y = (v)

I (much more on these ideas later)

5

Data and prior knowledge

I we are given data x1; : : : ; xn 2 Rd and y1; : : : ; yn 2 Rm

I (xi; yi) is the ith data pair or observation or example

I collectively we call x1; : : : ; xn and y1; : : : ; yn a data set

I we also (might) have prior knowledge about what f might look like

I e.g., f is smooth or continuous: f(x) � f(~x) when x is near ~x

I or we might know y � 0

6

Predictor

I we seek a predictor or model g : Rd ! R
m

I for feature vector x, our prediction (of y) is ŷ = g(x)

I predictor g is chosen based on both data and prior knowledge

I in terms of raw data, our predictor is

v̂ =
�1(g(�(u)))

(with a slight variation when is not invertible)

I ŷi � yi means our predictor does well on ith data pair

I but our real goal is to have ŷ � y for (x; y) pairs we have not seen

7

Parametrized predictors

I many predictors have the form ŷ = g(x; �), also written as ŷ = g�(x)

I the function g �xes the structure or form of the predictor

I � 2 Rp is a parameter (vector) for the prediction model

I choosing a particular � 2 Rp is called tuning or training or �tting the model

I a learning algorithm is a recipe for choosing � given data

I example: linear regression model

I ŷ = g�(x) = �1x1 + � � �+ �dxd

I you can �t a linear regression model using least squares

I (and other methods too; much more on that later)

8

Nearest neighbor predictors

9

Nearest neighbor predictor

I we are given data set x1; : : : ; xn, y1; : : : ; yn

I nearest neighbor predictor:

I given x, �nd its nearest neighbor xi among given data

I then predict ŷ = g(x) = yi

I extremely intuitive

I parameter is full data set: � = (x1; : : : ; xn; y1; : : : ; yn)

I `training' is easy; it requires no computation

I g is a piecewise constant function of x, since g(x) = yi when x is closer to xi than the other xjs

10

Example

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

I dots show data points (xi; yi), xi 2 R (d = 1)

I line shows ŷ = g(x)

11

Example

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x1

x2

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
-3

-2

-1

0

1

2

3

y

x1

x2

I dots show data points (xi; yi), xi 2 R2 (d = 2), red surface is ŷ = g(x)

12

k-nearest neighbor predictor

I given x, �nd its k nearest neighbors xi1 ; : : : ; xik among given data

I k-nearest neighbor predictor (k-NN) predicts the average of the associated outcomes

ŷ = g(x) =
1

k
(yi1 + � � �+ y

ik)

I a useful generalization of nearest neighbor predictor

I many variations, e.g.,

I use a weighted average to form ŷ

I pre-process by clustering the original data set

13

Example: k = 2

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x1

x2

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
-3

-2

-1

0

1

2

3

y

x1

x2

14

Soft nearest neighbor predictor

I prediction is weighted average, ŷ = g(x) =
Pn

i=1
wiyi, with weights

w
i =

e�kx�x
ik2
2
=�2

e�kx�x
1k2

2
=�2 + � � �+ e�kx�x

nk2
2
=�2

that depend on x

I � > 0 is a parameter, a characteristic length

I weight wi is larger when x is near xi

I for small �, this reverts to nearest neighbor predictor

15

Example

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
-3

-2

-1

0

1

2

3

� = 2

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
-3

-2

-1

0

1

2

3

� = 1

16

Example

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
-3

-2

-1

0

1

2

3

� = 0:5

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
-3

-2

-1

0

1

2

3

nearest neighbor

17

Linear predictors

18

Linear predictor

I a linear predictor has the form g(x; �) = �Tx

I for m = 1 (scalar y), parameter is a vector � 2 Rd

I for m > 1 (vector y), parameter is a matrix � 2 Rd�m

I also called a linear regression model

I prediction is a linear combination of features

ŷ = g(x) = �1x1 + � � �+ �dxd

I for m = 1, �i are entries of �

I for m > 1, �Ti are rows of �

I there are many ways to �t a linear regression model to data, including least squares

19

Interpreting a linear predictor

I we consider scalar y (m = 1); similar results hold for vector y

I linear predictor has form

ŷ = g(x) = �1x1 + � � �+ �dxd

I �3 is the amount prediction ŷ = g(x) increases when x3 increases by 1

I particularly interpretable when x3 is Boolean (only takes values 0 or 1 or �1 and 1)

I �7 = 0 means that the prediction does not depend on x7

I � small means predictor is insensitive to changes in x:

jg(x)� g(~x)j =
���Tx� �

T~x
�� = ���T(x� ~x)

�� � k�k2kx� ~xk2

20

A�ne predictor

I in many cases the �rst feature is constant, i.e., x1 = 1

I the linear predictor g is then an a�ne function of x2:d, i.e., linear plus a constant

g(x) = �
T
x = �1 + �2x2 + � � �+ �dxd

I �1 is called the o�set or constant term in the predictor

I �1 is the prediction when all features (except the constant) are zero

21

Example

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Affine predictor

22

Polynomial predictor

I with appropriate embedding of u, can get nonlinear function of u with a linear predictor of x

I common example with u 2 R:

x = �(u) = (1; u; u2; : : : ; ud�1)

(� : R! R
d is called polynomial or power embedding)

I linear predictor has form

ŷ = �
T
x = �1 + �2u+ �3u

2 + � � �+ �du
d�1

I this is a linear function of x, but a polynomial function of u

I (much more on this topic later)

23

Example

0.0 0.2 0.4 0.6 0.8 1.0
u

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Quadratic predictor

0.0 0.2 0.4 0.6 0.8 1.0
u

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Cubic predictor

24

Tree-based predictors

25

x

ŷ = 0:25

x1 � 0:2

ŷ = 0:5

x1 > 0:2

x2 � 0:8

ŷ = 0:6

x2 > 0:8

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2

0.4
0.6

0.8
1.0
0.0

0.2

0.4

0.6

0.8

1.0

y

x1

x2

Tree-based predictor

I predictor represented by partially developed Boolean tree

I non-leaf nodes associated with an index i and threshold t

I each leaf has a value ŷ

I parameter � encodes tree, thresholds, leaf values

I predictor is piecewise constant function of x, interpretable

when the tree is small enough
26

Example

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Tree-based predictor

27

Neural network predictors

28

Neural network layers

I a (feedforward) neural network predictor consists of a composition of functions

ŷ = g
3(g2(g1(x)))

(we show three here, but we can have any number)

I written as g = g3 � g2 � g1 (the symbol � means function composition)

I each gi is called a layer; here we have 3 layers

I we can write the predictor ŷ = g3(g2(g1(x))) as

z
1 = g

1(x); z
2 = g

2(z1); ŷ = g
3(z2)

I the vector zi 2 Rd
i

is called the activation or output of layer i

I we sometimes write z0 = x, d0 = d, and z3 = ŷ, d3 = m

(so the predictor input x and predictor output y are also considered activations of layers)

I sometimes visualized as �ow graph

x z
1

z
2 ŷ

g
1

g
2

g
3

29

Layer functions

I each layer gi is a composition of a function h with an a�ne function

g
i(zi�1) = h

�
�
T
i (1; z

i�1)
�

I the matrix �i 2 R
(di�1+1)�di is the parameter (also called weights) for layer i

I the function h : R! R is a scalar activation function, which acts elementwise on a vector argument

(i.e., it is applied to each entry of a vector)

I common activation functions include

I h(x) = (x)+ = max(x; 0), called ReLu (recti�ed linear unit)

I h(x) = ex=(1 + ex), called sigmoid function

I an M -layer neural network predictor is parameterized by � = (�1; : : : ; �M) (for M layers)

30

Network depiction

x2

x1

z
1

1

z
1

2

z
1

3

z
1

4

z
2

1

z
2

2

ŷ

(�2)21

(�1)24

I neural networks are often represented by network diagrams

I each vertex is a component of an activation

I edges are individual weights or parameters

I example above has 3 layers, with d0 = 2, d1 = 4, d2 = 2, d4 = 1

31

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6
0

1

2

3

4

x1

x2

ŷ

Example neural network predictor

�1 =

2
4

0:80 0:10 1:30 1:20

�0:50 0:70 0:80 2:90

�1:80 0:20 �1:50 �0:60

3
5

�2 =

2
6664

1:40 1:10

�0:10 �0:90

0:50 0:20

�0:40 0:90

�0:40 �0:10

3
7775

�3 =

2
4
0:90

0:70

0:50

3
5

32

Neural network predictors

I neural network described above is called a feedforward neural network or multi-layer preceptron

I there are many variations on this basic neural network

I you'll see them in other classes

33

Summary

34

Summary

I a predictor is a function g : Rd ! R
m meant to predict the outcome y, given feature vector x

I there are many types of predictors

I nearest-neighbor

I tree

I linear

I neural networks

I . . . and many others

I most predictors are parametrized, with the form g�(x)

I g �xes the form of the predictor

I � 2 Rp are parameters that we choose to �t the data, which is called training the predictor

I we'll see later how training is done

35

