EE104 S. Lall and S. Boyd

Predictors

Sanjay Lall and Stephen Boyd

EE104
Stanford University

Predictors

Data fitting

we think y € R™ and z € R? are (approximately) related by

Yy~ f(z)

v

» z is called the independent variable or feature vector

» y is called the outcome or response or target or label or dependent variable
» very often m = 1, i.e., the outcome is scalar

» y is something we want to predict, given z

» we don't know the ‘true’ relationship between z and y (and there may not be one)

Features

z is a vector of features:

» documents

» =z is word count histogram for a document
» patient data

» z are patient attributes, test results, symptoms
» customers

» z is purchase history and other attributes of a customer

Where features come from

» we use u to denote the raw input data, such as a vector, word or text, image, video, audio, ...

» z = ¢(u) is the corresponding feature vector

» the function ¢ is called the embedding or feature function or feature mapping
» ¢ can range from very simple to quite complicated

» often we take ¢(u) = z1 = 1, the constant feature

» similarly, the raw output data v can be featurized as y = 9(v)

» (much more on these ideas later)

Data and prior knowledge

> we are given data z',...,z" € R*and ¢*,...,y" ER™
» (z*,y") is the ith data pair or observation or example

» collectively we call z*,...,z™ and ', ...,y™ a data set

» we also (might) have prior knowledge about what f might look like

» eg., fissmooth or continuous: f(z) ~ f(&) when z is near &

» or we might know y > 0

Predictor

> we seek a predictor or model g : R* — R™
» for feature vector z, our prediction (of y) is § = g(z)
» predictor g is chosen based on both data and prior knowledge

» in terms of raw data, our predictor is
o =97 (g9(4(u)))

(with a slight variation when % is not invertible

» ' = y* means our predictor does well on ith data pair

» but our real goal is to have § ~ y for (z,y) pairs we have not seen

Parametrized predictors

many predictors have the form § = g(z, 8), also written as § = go(z)

v

» the function g fixes the structure or form of the predictor

» 6 € RP is a parameter (vector) for the prediction model

v

choosing a particular 6 € RP is called tuning or training or fitting the model

a learning algorithm is a recipe for choosing 8 given data

v

» example: linear regression model
» §=ge(z) =61z1+ - -+ 04zq
» you can fit a linear regression model using least squares

» (and other methods too; much more on that later)

Nearest neighbor predictors

Nearest neighbor predictor

n 1 n

> we are given data set z',...,z", y',...,y

» nearest neighbor predictor:

> given z, find its nearest neighbor z* among given data

> then predict § = g(z) = ¢*
» extremely intuitive
b parameter is full data set: 6§ = (z*,..., 2", y*,...,y™)
» ‘training’ is easy; it requires no computation

> g is a piecewise constant function of z, since g(z) = y* when z is closer to z* than the other s

10

Example

07

06

05 et §
04

03 .

0.2

0.0 0.2 0.4

» dots show data points (z*,y%), z* € R (d = 1)

» line shows § = g(z)

11

Example

3

2 L] L]
4
T2

0 ° L
-1

-2 °

-3

-3 -2 -1 0 1 2 3
Z1

» dots show data points (z¢,y*), z* € R? (d = 2), red surface is § = g(z)

12

k-nearest neighbor predictor

» given z, find its k nearest neighbors ', ..., z" among given data

» k-nearest neighbor predictor (k-NN) predicts the average of the associated outcomes
. 1 5 ;
9=9(@)=2(y" +-+y")

» a useful generalization of nearest neighbor predictor
» many variations, e.g.,

» use a weighted average to form §

» pre-process by clustering the original data set

13

Example

-2

-3

t k=2
L]
L]
L]
-3 -2 -1 0
T1

14

Soft nearest neighbor predictor

» prediction is weighted average, § = g(z) =)., w'y®, with weights

=

—lz—z? 2/ 2
. e—lle—2"13/p

YT et IBR 4 glle—anIB/eR
that depend on z

» p > 0 is a parameter, a characteristic length

> weight w® is larger when z is near z*

» for small p, this reverts to nearest neighbor predictor

15

Example

16

Example

nearest neighbor

17

Linear predictors

18

Linear predictor

» a linear predictor has the form g(z,68) = 8"z

for m = 1 (scalar y), parameter is a vector 8 € R?

v

Rdxm

v

for m > 1 (vector y), parameter is a matrix 6 €
» also called a linear regression model
» prediction is a linear combination of features

g=g9g(z) =6:1z1+ -+ azq

» for m = 1, §; are entries of 6

» form > 1, 9;'— are rows of 8

» there are many ways to fit a linear regression model to data, including least squares

19

Interpreting a linear predictor

» we consider scalar y (m = 1); similar results hold for vector y

» linear predictor has form

g=g(z) =61z1+ -+ azq
» 03 is the amount prediction § = g(z) increases when z3 increases by 1

» particularly interpretable when z3 is Boolean (only takes values 0 or 1 or —1 and 1)
» 67 = 0 means that the prediction does not depend on z~
» 6 small means predictor is insensitive to changes in z:

l9(2) — 9(8)| = |02 — 673| = |07 (2 —)| < [18]lalle — 5]l

20

Affine predictor

» in many cases the first feature is constant, i.e., z1 = 1
» the linear predictor g is then an affine function of z2.4, i.e., linear plus a constant

9(z) =0Tz = 0; + 625 + - + Bazy

» 61 is called the offset or constant term in the predictor

» 01 is the prediction when all features (except the constant) are zero

21

Example

Affine predictor

0.6

(X s
05 ove . o

[.
.
0.4

0.3 .

0.2

o
0.1
0.0 0.2 0.4 0.6 0.8 1.0

22

Polynomial predictor

» with appropriate embedding of u, can get nonlinear function of u with a linear predictor of z

» common example with u € R:
T = ¢(u) = (17u) u27 et)ud?l)
(¢ : R = R% is called polynomial or power embedding)

» linear predictor has form
§=0"2 =01+ 0su+ 0su + -+ 6qu’ !

» this is a linear function of z, but a polynomial function of u

» (much more on this topic later)

23

Example

Quadratic predictor
0.7
0.6
05 IV g
0.4
0.3 .
0.2

0.1

0.8

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.2

Cubic predictor

0.4

0.6

0.8

24

Tree-based predictors

25

» predictor represented by partially developed Boolean tree
» non-leaf nodes associated with an index 7 and threshold ¢

» each leaf has a value §

» parameter 8 encodes tree, thresholds, leaf values

» predictor is piecewise constant function of z, interpretable
when the tree is small enough

26

Example

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.2

Tree-based predictor

0.4

0.6

0.8

27

Neural network predictors

28

Neural network layers

» a (feedforward) neural network predictor consists of a composition of functions
7=9"(9°(g"(2)))
(we show three here, but we can have any number)
b written as g = g o0 g% 0 g (the symbol o means function composition)
» each g* is called a /ayer; here we have 3 layers
» we can write the predictor § = g®(¢%(g'(z))) as
2 =g'(z), =4(2"), §=4°(")
» the vector z* € RY is called the activation or output of layer 2

» we sometimes write 2° =z, d° =d, and 23 =4, d* =m
(so the predictor input z and predictor output y are also considered activations of layers)

» sometimes visualized as flow graph

QENOENCENG)

29

Layer functions

» each layer g* is a composition of a function k with an affine function
g =h(6/(1,2"))
» the matrix 6; € R@i-1+Dxdi is the parameter (also called weights) for layer i

» the function h : R — R is a scalar activation function, which acts elementwise on a vector argument
(i.e., it is applied to each entry of a vector)

» common activation functions include
» h(z) = (z)+ = max(z,0), called ReLu (rectified linear unit)
» h(z) =e*/(1+ e®), called sigmoid function

» an M-layer neural network predictor is parameterized by 8 = (61, ...,0) (for M layers)

30

Network depiction

» neural networks are often represented by network diagrams

» each vertex is a component of an activation

p» edges are individual weights or parameters

» example above has 3 layers, with d® =2, d* =4,d> =2,ds =1

31

Example neural network predictor

[0.80 0.10 130 1.20
6= | —0.50 0.70 0.80 2.90
-1.80 0.20 —1.50 —0.60

T 1.40 1.10
—0.10 —0.90
6= | 050 0.20
—0.40 0.90
| —0.40 —0.10

[0.90'|

63 = | 0.70
0.50J

32

Neural network predictors

» neural network described above is called a feedforward neural network or multi-layer preceptron
» there are many variations on this basic neural network

» you'll see them in other classes

33

Summary

34

Summary

> a predictor is a function g : R* — R™ meant to predict the outcome y, given feature vector

» there are many types of predictors
» nearest-neighbor
» tree
» linear
» neural networks

» ...and many others

» most predictors are parametrized, with the form go(z)

» g fixes the form of the predictor
» @ € RP are parameters that we choose to fit the data, which is called training the predictor

» we'll see later how training is done

35

