Predictors

Sanjay Lall and Stephen Boyd

EE104 Stanford University

Predictors

Data fitting

 \blacktriangleright we think $y \in \mathbf{R}^m$ and $x \in \mathbf{R}^d$ are (approximately) related by

y pprox f(x)

- **x** is called the *independent variable* or *feature vector*
- ▶ y is called the outcome or response or target or label or dependent variable
- very often m = 1, *i.e.*, the outcome is scalar
- \blacktriangleright y is something we want to predict, given x
- \blacktriangleright we don't know the 'true' relationship between x and y (and there may not be one)

Features

 \boldsymbol{x} is a vector of features:

▶ documents

▶ *x* is word count histogram for a document

▶ patient data

 $\blacktriangleright x$ are patient attributes, test results, symptoms

customers

 \blacktriangleright x is purchase history and other attributes of a customer

- \blacktriangleright we use u to denote the raw input data, such as a vector, word or text, image, video, audio, \ldots
- $x = \phi(u)$ is the corresponding *feature vector*
- \blacktriangleright the function ϕ is called the *embedding* or *feature function* or *feature mapping*
- \blacktriangleright ϕ can range from very simple to quite complicated
- \blacktriangleright often we take $\phi(u)_1 = x_1 = 1$, the *constant feature*
- \blacktriangleright similarly, the raw output data v can be featurized as $y=\psi(v)$
- (much more on these ideas later)

Data and prior knowledge

- \blacktriangleright we are given data $x^1,\ldots,x^n\in\mathsf{R}^d$ and $y^1,\ldots,y^n\in\mathsf{R}^m$
- \blacktriangleright (x^i, y^i) is the *i*th *data pair* or *observation* or *example*
- \blacktriangleright collectively we call x^1,\ldots,x^n and y^1,\ldots,y^n a *data set*
- ▶ we also (might) have *prior knowledge* about what f might look like
 - \blacktriangleright e.g., f is smooth or continuous: $f(x) pprox f(ilde{x})$ when x is near $ilde{x}$
 - \blacktriangleright or we might know $y \ge 0$

Predictor

- \blacktriangleright we seek a *predictor* or *model* $g: \mathbf{R}^d
 ightarrow \mathbf{R}^m$
- \blacktriangleright for feature vector x, our prediction (of y) is $\hat{y} = g(x)$
- predictor g is chosen based on both data and prior knowledge
- ▶ in terms of raw data, our predictor is

$$\hat{v}=\psi^{-1}(g(\phi(u)))$$

(with a slight variation when ψ is not invertible)

- $igstarrow \hat{y}^i pprox y^i$ means our predictor does well on ith data pair
- **>** but our real goal is to have $\hat{y} \approx y$ for (x, y) pairs we have not seen

Parametrized predictors

- \blacktriangleright many predictors have the form $\hat{y}=g(x, heta),$ also written as $\hat{y}=g_{ heta}(x)$
- ▶ the function g fixes the *structure* or *form* of the predictor
- $\theta \in \mathbf{R}^p$ is a *parameter* (vector) for the prediction model
- ▶ choosing a particular $\theta \in \mathbf{R}^p$ is called *tuning* or *training* or *fitting* the model
- ▶ a *learning algorithm* is a recipe for choosing θ given data
- example: linear regression model
 - $\blacktriangleright \quad \hat{y} = g_{\theta}(x) = \theta_1 x_1 + \cdots + \theta_d x_d$
 - you can fit a linear regression model using least squares
 - (and other methods too; much more on that later)

Nearest neighbor predictors

Nearest neighbor predictor

- \blacktriangleright we are given data set x^1,\ldots,x^n , y^1,\ldots,y^n
- nearest neighbor predictor.
 - \blacktriangleright given x, find its nearest neighbor x^i among given data
 - \blacktriangleright then predict $\hat{y} = g(x) = y^i$
- extremely intuitive
- \blacktriangleright parameter is full data set: $heta = (x^1, \dots, x^n, y^1, \dots, y^n)$
- 'training' is easy; it requires no computation
- ightarrow g is a piecewise constant function of x, since $g(x)=y^i$ when x is closer to x^i than the other x^j s

 \blacktriangleright dots show data points $(x^i,y^i),\ x^i\in {\sf R}\ (d=1)$

line shows $\hat{y} = g(x)$

 \blacktriangleright dots show data points $(x^i,y^i),~x^i\in \mathsf{R}^2$ (d=2), red surface is $\hat{y}=g(x)$

k-nearest neighbor predictor

- \blacktriangleright given x, find its k nearest neighbors x^{i_1},\ldots,x^{i_k} among given data
- ▶ k-nearest neighbor predictor (k-NN) predicts the average of the associated outcomes

$$\hat{y}=g(x)=rac{1}{k}(y^{i_1}+\cdots+y^{i_k})$$

- ▶ a useful generalization of nearest neighbor predictor
- many variations, e.g.,
 - \blacktriangleright use a weighted average to form \hat{y}
 - ▶ pre-process by clustering the original data set

Example: k = 2

Soft nearest neighbor predictor

 \blacktriangleright prediction is weighted average, $\hat{y} = g(x) = \sum_{i=1}^n w^i y^i$, with weights

$$w^{i} = \frac{e^{-||x-x^{i}||_{2}^{2}/\rho^{2}}}{e^{-||x-x^{1}||_{2}^{2}/\rho^{2}} + \dots + e^{-||x-x^{n}||_{2}^{2}/\rho^{2}}}$$

that depend on \boldsymbol{x}

- ightarrow
 ho > 0 is a parameter, a characteristic length
- \blacktriangleright weight w^i is larger when x is near x^i
- ▶ for small ρ , this reverts to nearest neighbor predictor

Linear predictors

Linear predictor

- ▶ a linear predictor has the form $g(x, \theta) = \theta^{\top} x$
- \blacktriangleright for m=1 (scalar y), parameter is a vector $heta\in\mathsf{R}^d$
- \blacktriangleright for m>1 (vector y), parameter is a matrix $heta\in\mathsf{R}^{d imes m}$
- also called a linear regression model
- prediction is a linear combination of features

$$\hat{y}=g(x)= heta_1x_1+\dots+ heta_dx_d$$

- \blacktriangleright for m = 1, θ_i are entries of θ
- ▶ for m > 1, θ_i^{T} are rows of θ
- > there are many ways to fit a linear regression model to data, including least squares

Interpreting a linear predictor

- \blacktriangleright we consider scalar y (m = 1); similar results hold for vector y
- linear predictor has form

$$\hat{y}=g(x)= heta_1x_1+\dots+ heta_dx_d$$

- $igstarrow heta_3$ is the amount prediction $\hat{y}=g(x)$ increases when x_3 increases by 1
 - \blacktriangleright particularly interpretable when x_3 is Boolean (only takes values 0 or 1 or -1 and 1)
- $ightarrow heta_7 = 0$ means that the prediction does not depend on x_7
- \triangleright θ small means predictor is insensitive to changes in x:

$$|g(x)-g(ilde{x})|=\left| heta^ op x- heta^ op ilde{x}
ight|=\left| heta^ op (x- ilde{x})
ight|\leq || heta||_2||x- ilde{x}||_2$$

Affine predictor

- \blacktriangleright in many cases the first feature is constant, *i.e.*, $x_1=1$
- **b** the linear predictor g is then an affine function of $x_{2:d}$, *i.e.*, linear plus a constant

$$g(x) = heta^{ op} x = heta_1 + heta_2 x_2 + \dots + heta_d x_d$$

- \triangleright θ_1 is called the *offset* or *constant term* in the predictor
- \blacktriangleright θ_1 is the prediction when all features (except the constant) are zero

Polynomial predictor

- \blacktriangleright with appropriate embedding of u, can get nonlinear function of u with a linear predictor of x
- common example with $u \in \mathbf{R}$:

$$x=\phi(u)=(1,u,u^2,\ldots,u^{d-1})$$

 $(\phi: \mathbf{R} \rightarrow \mathbf{R}^d \text{ is called } polynomial \text{ or } power \text{ embedding})$

linear predictor has form

$$\hat{y}= heta^{ op}x= heta_1+ heta_2u+ heta_3u^2+\cdots+ heta_du^{d-1}$$

- \blacktriangleright this is a linear function of x, but a polynomial function of u
- (much more on this topic later)

24

Tree-based predictors

Tree-based predictor

- > predictor represented by partially developed Boolean tree
- non-leaf nodes associated with an index i and threshold t
- \blacktriangleright each leaf has a value \hat{y}
- \blacktriangleright parameter θ encodes tree, thresholds, leaf values
- predictor is piecewise constant function of x, interpretable when the tree is small enough

27

Neural network predictors

Neural network layers

▶ a (feedforward) *neural network* predictor consists of a composition of functions

$$\hat{y}=g^3(g^2(g^1(x)))$$

(we show three here, but we can have any number)

- ▶ written as $g = g^3 \circ g^2 \circ g^1$ (the symbol \circ means function composition)
- ▶ each g^i is called a *layer*; here we have 3 layers
- \blacktriangleright we can write the predictor $\hat{y}=g^3(g^2(g^1(x)))$ as

$$z^1=g^1(x), \qquad z^2=g^2(z^1), \qquad \hat{y}=g^3(z^2)$$

- \blacktriangleright the vector $z^i \in {\rm I\!R}^{d^i}$ is called the *activation* or *output* of layer i
- ▶ we sometimes write z⁰ = x, d⁰ = d, and z³ = ŷ, d³ = m (so the predictor input x and predictor output y are also considered activations of layers)
- sometimes visualized as flow graph

Layer functions

 \blacktriangleright each layer g^i is a composition of a function h with an affine function

$$g^i(z^{i-1}) = hig(heta_i^{ op}(1,z^{i-1})ig)$$

- ▶ the matrix $\theta_i \in \mathbf{R}^{(d_{i-1}+1) \times d_i}$ is the *parameter* (also called *weights*) for layer *i*
- ▶ the function $h : \mathbb{R} \to \mathbb{R}$ is a scalar *activation function*, which acts elementwise on a vector argument (*i.e.*, it is applied to each entry of a vector)
- common activation functions include
 - $h(x) = (x)_+ = \max(x, 0)$, called *ReLu* (rectified linear unit)
 - $h(x) = e^x/(1+e^x)$, called sigmoid function
- ▶ an *M*-layer neural network predictor is parameterized by $\theta = (\theta_1, \ldots, \theta_M)$ (for *M* layers)

Network depiction

- neural networks are often represented by network diagrams
 - each vertex is a component of an activation
 - edges are individual weights or parameters
- \blacktriangleright example above has 3 layers, with $d^0=2,~d^1=4,~d_2=2,~d_4=1$

Example neural network predictor

$$\theta_{1} = \begin{bmatrix} 0.80 & 0.10 & 1.30 & 1.20 \\ -0.50 & 0.70 & 0.80 & 2.90 \\ -1.80 & 0.20 & -1.50 & -0.60 \end{bmatrix}$$
$$\theta_{2} = \begin{bmatrix} 1.40 & 1.10 \\ -0.10 & -0.90 \\ 0.50 & 0.20 \\ -0.40 & 0.90 \\ -0.40 & -0.10 \end{bmatrix}$$
$$\theta_{3} = \begin{bmatrix} 0.90 \\ 0.70 \\ 0.50 \end{bmatrix}$$

Neural network predictors

- > neural network described above is called a *feedforward neural network* or multi-layer preceptron
- ▶ there are many variations on this basic neural network
- ▶ you'll see them in other classes

Summary

Summary

- igstarrow a predictor is a function $g: {f R}^d
 ightarrow {f R}^m$ meant to predict the outcome y, given feature vector x
- ▶ there are many types of predictors
 - nearest-neighbor
 - tree
 - linear
 - neural networks
 - and many others
- most predictors are parametrized, with the form $g_{\theta}(x)$
 - ▶ g fixes the form of the predictor
 - ig> $heta\in \mathbf{R}^p$ are parameters that we choose to fit the data, which is called training the predictor
 - ▶ we'll see later how training is done