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Data �tting

I we think y 2 Rm and x 2 Rd are (approximately) related by

y � f(x)

I x is called the independent variable or feature vector

I y is called the outcome or response or target or label or dependent variable

I very often m = 1, i.e., the outcome is scalar

I y is something we want to predict, given x

I we don't know the `true' relationship between x and y (and there may not be one)
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Features

x is a vector of features:

I documents

I x is word count histogram for a document

I patient data

I x are patient attributes, test results, symptoms

I customers

I x is purchase history and other attributes of a customer
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Where features come from

I we use u to denote the raw input data, such as a vector, word or text, image, video, audio, . . .

I x = �(u) is the corresponding feature vector

I the function � is called the embedding or feature function or feature mapping

I � can range from very simple to quite complicated

I often we take �(u)1 = x1 = 1, the constant feature

I similarly, the raw output data v can be featurized as y =  (v)

I (much more on these ideas later)
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Data and prior knowledge

I we are given data x1; : : : ; xn 2 Rd and y1; : : : ; yn 2 Rm

I (xi; yi) is the ith data pair or observation or example

I collectively we call x1; : : : ; xn and y1; : : : ; yn a data set

I we also (might) have prior knowledge about what f might look like

I e.g., f is smooth or continuous: f(x) � f(~x) when x is near ~x

I or we might know y � 0

6



Predictor

I we seek a predictor or model g : Rd ! R
m

I for feature vector x, our prediction (of y) is ŷ = g(x)

I predictor g is chosen based on both data and prior knowledge

I in terms of raw data, our predictor is

v̂ =  
�1(g(�(u)))

(with a slight variation when  is not invertible)

I ŷi � yi means our predictor does well on ith data pair

I but our real goal is to have ŷ � y for (x; y) pairs we have not seen
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Parametrized predictors

I many predictors have the form ŷ = g(x; �), also written as ŷ = g�(x)

I the function g �xes the structure or form of the predictor

I � 2 Rp is a parameter (vector) for the prediction model

I choosing a particular � 2 Rp is called tuning or training or �tting the model

I a learning algorithm is a recipe for choosing � given data

I example: linear regression model

I ŷ = g�(x) = �1x1 + � � �+ �dxd

I you can �t a linear regression model using least squares

I (and other methods too; much more on that later)
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Nearest neighbor predictors
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Nearest neighbor predictor

I we are given data set x1; : : : ; xn, y1; : : : ; yn

I nearest neighbor predictor:

I given x, �nd its nearest neighbor xi among given data

I then predict ŷ = g(x) = yi

I extremely intuitive

I parameter is full data set: � = (x1; : : : ; xn; y1; : : : ; yn)

I `training' is easy; it requires no computation

I g is a piecewise constant function of x, since g(x) = yi when x is closer to xi than the other xjs
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Example
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I dots show data points (xi; yi), xi 2 R (d = 1)

I line shows ŷ = g(x)
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Example
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I dots show data points (xi; yi), xi 2 R2 (d = 2), red surface is ŷ = g(x)
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k-nearest neighbor predictor

I given x, �nd its k nearest neighbors xi1 ; : : : ; xik among given data

I k-nearest neighbor predictor (k-NN) predicts the average of the associated outcomes

ŷ = g(x) =
1

k
(yi1 + � � �+ y

ik)

I a useful generalization of nearest neighbor predictor

I many variations, e.g.,

I use a weighted average to form ŷ

I pre-process by clustering the original data set
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Example: k = 2
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Soft nearest neighbor predictor

I prediction is weighted average, ŷ = g(x) =
Pn

i=1
wiyi, with weights

w
i =

e�kx�x
ik2
2
=�2

e�kx�x
1k2

2
=�2 + � � �+ e�kx�x

nk2
2
=�2

that depend on x

I � > 0 is a parameter, a characteristic length

I weight wi is larger when x is near xi

I for small �, this reverts to nearest neighbor predictor
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Example
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Example
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Linear predictors
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Linear predictor

I a linear predictor has the form g(x; �) = �Tx

I for m = 1 (scalar y), parameter is a vector � 2 Rd

I for m > 1 (vector y), parameter is a matrix � 2 Rd�m

I also called a linear regression model

I prediction is a linear combination of features

ŷ = g(x) = �1x1 + � � �+ �dxd

I for m = 1, �i are entries of �

I for m > 1, �Ti are rows of �

I there are many ways to �t a linear regression model to data, including least squares
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Interpreting a linear predictor

I we consider scalar y (m = 1); similar results hold for vector y

I linear predictor has form

ŷ = g(x) = �1x1 + � � �+ �dxd

I �3 is the amount prediction ŷ = g(x) increases when x3 increases by 1

I particularly interpretable when x3 is Boolean (only takes values 0 or 1 or �1 and 1)

I �7 = 0 means that the prediction does not depend on x7

I � small means predictor is insensitive to changes in x:

jg(x)� g(~x)j =
���Tx� �

T~x
�� = ���T(x� ~x)

�� � k�k2kx� ~xk2
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A�ne predictor

I in many cases the �rst feature is constant, i.e., x1 = 1

I the linear predictor g is then an a�ne function of x2:d, i.e., linear plus a constant

g(x) = �
T
x = �1 + �2x2 + � � �+ �dxd

I �1 is called the o�set or constant term in the predictor

I �1 is the prediction when all features (except the constant) are zero
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Example
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Affine predictor
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Polynomial predictor

I with appropriate embedding of u, can get nonlinear function of u with a linear predictor of x

I common example with u 2 R:

x = �(u) = (1; u; u2; : : : ; ud�1)

(� : R! R
d is called polynomial or power embedding)

I linear predictor has form

ŷ = �
T
x = �1 + �2u+ �3u

2 + � � �+ �du
d�1

I this is a linear function of x, but a polynomial function of u

I (much more on this topic later)
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Example
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Cubic predictor
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Tree-based predictors
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Tree-based predictor

I predictor represented by partially developed Boolean tree

I non-leaf nodes associated with an index i and threshold t

I each leaf has a value ŷ

I parameter � encodes tree, thresholds, leaf values

I predictor is piecewise constant function of x, interpretable

when the tree is small enough
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Example
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Neural network predictors

28



Neural network layers

I a (feedforward) neural network predictor consists of a composition of functions

ŷ = g
3(g2(g1(x)))

(we show three here, but we can have any number)

I written as g = g3 � g2 � g1 (the symbol � means function composition)

I each gi is called a layer; here we have 3 layers

I we can write the predictor ŷ = g3(g2(g1(x))) as

z
1 = g

1(x); z
2 = g

2(z1); ŷ = g
3(z2)

I the vector zi 2 Rd
i

is called the activation or output of layer i

I we sometimes write z0 = x, d0 = d, and z3 = ŷ, d3 = m

(so the predictor input x and predictor output y are also considered activations of layers)

I sometimes visualized as �ow graph

x z
1

z
2 ŷ

g
1

g
2

g
3
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Layer functions

I each layer gi is a composition of a function h with an a�ne function

g
i(zi�1) = h

�
�
T
i (1; z

i�1)
�

I the matrix �i 2 R
(di�1+1)�di is the parameter (also called weights) for layer i

I the function h : R! R is a scalar activation function, which acts elementwise on a vector argument

(i.e., it is applied to each entry of a vector)

I common activation functions include

I h(x) = (x)+ = max(x; 0), called ReLu (recti�ed linear unit)

I h(x) = ex=(1 + ex), called sigmoid function

I an M -layer neural network predictor is parameterized by � = (�1; : : : ; �M ) (for M layers)
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Network depiction
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I neural networks are often represented by network diagrams

I each vertex is a component of an activation

I edges are individual weights or parameters

I example above has 3 layers, with d0 = 2, d1 = 4, d2 = 2, d4 = 1
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Neural network predictors

I neural network described above is called a feedforward neural network or multi-layer preceptron

I there are many variations on this basic neural network

I you'll see them in other classes
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Summary
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Summary

I a predictor is a function g : Rd ! R
m meant to predict the outcome y, given feature vector x

I there are many types of predictors

I nearest-neighbor

I tree

I linear

I neural networks

I . . . and many others

I most predictors are parametrized, with the form g�(x)

I g �xes the form of the predictor

I � 2 Rp are parameters that we choose to �t the data, which is called training the predictor

I we'll see later how training is done
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