Overview and Examples

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Machine learning overview
we describe here the general ideas and methods used in machine learning, at a high level

we will go over all of these topics later, in much more detail

don’t worry if some of this seems abstract at this point, or there are terms you don’t know yet
Artificial intelligence approaches

- we would like computers to perform complicated tasks, e.g., medical diagnosis
- distinguish two approaches
 - knowledge-based: a computer program whose logic encodes a large number of properties of the world, usually developed by a team of experts over many years
 - machine learning: extract information directly from historical data and extrapolate to make predictions
- this class is about machine learning
Machine learning tasks

generic tasks:

- build a *model* from some *data*
 - choose how to map raw data to feature vectors
 - choose a model form
 - choose parameter values in the model

- *test* or *validate* the model
 - evaluate the model on unseen data to assess its performance

‘model’ can mean several things, depending on context
Machine learning model taxonomy

- *supervised* versus *unsupervised* models
 - supervised learning models predict something, given some other things
 - called a *prediction model*
 - called *regression* when we predict a real scalar or vector value
 - called *classification* when we predict a value from a finite set such as \(\{\text{True, False}\} \)
 - unsupervised learning models just create a model of the data
 - called a *data model*
 - point estimates versus probability estimates
 - a *point estimate* predicts a single value
 - a *probability estimate* predicts a distribution of values
 - the lines between these can be blurred
Examples

what kind of models would each of these tasks use?

- predict tomorrow’s rainfall, given the date and the last 10 days of rainfall data
- determine from a photo of a face if the user is who she claims to be
- estimate the probability of 10 possible diagnoses, given some patient data, test results
- cluster customers into 22 different groups with similar buying habits
- estimate the risk (probability) of an auto accident at a location given the hour and weather
- build an *anomaly detector*, that rates how suspicious some new data is
- build a *simulator* that generates fake new data that ‘looks like’ the given data
Performance metrics

- we judge performance of a model on some data using a \textit{metric} such as
 - mean-square or RMS prediction error (for regression)
 - error rate (for classification)
 - log likelihood (for probabilistic models)
- examples:
 - our predictor predicts tomorrow’s maximum temperature with an RMS error of 1.3°C
 - our classifier predicts the topic of a newspaper article (from a set of 50 choices) with an error rate of 5%
Training and validation

- our goal is to develop a model that performs well for new, unseen data
- standard practice is to divide the given data set into two parts
 - a training data set, used to choose or train the model
 - a test or validation data set, used to evaluate tentative models
- we can look at the performance metrics on the training and test data sets
- if the model performs well on the training set, but poorly on the test set, it is overfit (and probably useless in practice)
- if the model performs well on the test set, it’s likely going to perform well on new unseen data
Learning a model

A common method of choosing a model:

- choose the *model structure* or *form* or *type*
- the model contains a number of *model parameters*
- choose a *loss function* that rates how badly the model performs on a single data point or example
- choose the parameter value by minimizing an average loss over the training data

This general scheme, called *empirical risk minimization*, is used to fit a wide variety of models.
Examples
Example: diagnosis

- goal is to predict if a patient has a disease, based on whether or not she exhibits 10 symptoms
- historical data consists of a large number of patient records
- each record contains
 - 10 Booleans, specifying the presence or absence of the 10 symptoms
 - a Boolean specifying whether that patient had the disease
- machine learning algorithm observes these data, produces a predictor
- predictor takes as input 10 Booleans, returns a single Boolean prediction
- this is a classifier, since we are predicting an outcome that takes only two values
- we will judge model by its error rate on a separate test set of data, not used to develop the model
- a probabilistic model returns a probability that the patient has the disease, not just a Boolean
Example: digit recognition

- 8-bit grayscale images of handwritten digits, 28 × 28 pixels
- goal is to guess the digit (i.e., 0, …, 9) from the image
- 60,000 training images, 10,000 test images
- preprocessed by antialiasing, scaling and centering
- data originally by NIST, modified by Le Cun, 1998
Data

- Kaggle: datasets and competitions
- ImageNet dataset: 14m images
- Street view house numbers: 600,000 digit images
- Lyft Level 5 self-driving dataset
- many other large datasets
Software

- Torch, Keras, Theano, TensorFlow, and many others, ...
- Scikit-Learn, Spark/MLlib
- Flux, in Julia
- generic packages in R, Matlab, Python, Java, Julia ...
Course outline
The major parts of the course

1. *regression* — to predict one or more real values
2. *classification* — to predict one of a finite number of possible outcomes
3. *probabilistic supervised learning* — to predict a distribution of outcomes
4. *unsupervised learning* — to develop a data model
5. *optimization* — to fit or choose parameters in all of the models above