Overview and Examples

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Machine learning overview
Overview

- we describe here the general ideas and methods used in machine learning, at a high level
- we will go over all of these topics later, in much more detail
- don’t worry if some of this seems abstract at this point, or there are terms you don’t know yet
Artificial intelligence approaches

- we would like computers to perform complicated tasks, e.g., medical diagnosis

- distinguish two approaches
 - *knowledge-based*: a computer program whose logic encodes a large number of properties of the world, usually developed by a team of experts over many years
 - *machine learning*: extract information directly from historical data and extrapolate to make predictions

- this class is about machine learning
Machine learning tasks

generic tasks:

- build a *model* from some *data*
 - choose how to map raw data to feature vectors
 - choose a model form
 - choose parameter values in the model

- *test* or *validate* the model
 - evaluate the model on unseen data to assess its performance

‘model’ can mean several things, depending on context
Machine learning model taxonomy

- *supervised* versus *unsupervised* models

 - supervised learning models *predict something, given some other things*
 - called a *prediction model*
 - called *regression* when we predict a real scalar or vector value
 - called *classification* when we predict a value from a finite set such as \{True, False\}

 - unsupervised learning models just create a model of the data
 - called a *data model*

- point estimates versus probability estimates
 - a *point estimate* predicts a single value
 - a *probability estimate* predicts a distribution of values

- the lines between these can be blurred
Examples

what kind of models would each of these tasks use?

- predict tomorrow’s rainfall, given the date and the last 10 days of rainfall data
- determine from a photo of a face if the user is who she claims to be
- estimate the probability of 10 possible diagnoses, given some patient data, test results
- cluster customers into 22 different groups with similar buying habits
- estimate the risk (probability) of an auto accident at a location given the hour and weather
- build an *anomaly detector*, that rates how suspicious some new data is
- build a *simulator* that generates fake new data that ‘looks like’ the given data
Performance metrics

we judge performance of a model on some data using a *metric* such as

- mean-square or RMS prediction error (for regression)
- error rate (for classification)
- log likelihood (for probabilistic models)

examples:

- our predictor predicts tomorrow’s maximum temperature with an RMS error of 1.3°C
- our classifier predicts the topic of a newspaper article (from a set of 50 choices) with an error rate of 5%
Training and validation

- Our goal is to develop a model that performs well for new, unseen data.

- Standard practice is to divide the given data set into two parts:
 - A training data set, used to choose or train the model.
 - A test or validation data set, used to evaluate tentative models.

- We can look at the performance metrics on the training and test data sets.

- If the model performs well on the training set, but poorly on the test set, it is overfit (and probably useless in practice).

- If the model performs well on the test set, it’s likely going to perform well on new unseen data.
Learning a model

a common method of choosing a model:

- choose the *model structure* or *form* or *type*

- the model contains a number of *model parameters*

- choose a *loss function* that rates how badly the model performs on a single data point or example

- choose the parameter value by minimizing an average loss over the training data

this general scheme, called *empirical risk minimization*, is used to fit a wide variety of models
Examples
Example: diagnosis

- goal is to predict if a patient has a disease, based on whether or not she exhibits 10 symptoms
- historical data consists of a large number of patient records
- each record contains
 - 10 Booleans, specifying the presence or absence of the 10 symptoms
 - a Boolean specifying whether that patient had the disease
- machine learning algorithm observes these data, produces a predictor
- predictor takes as input 10 Booleans, returns a single Boolean prediction
- this is a classifier, since we are predicting an outcome that takes only two values
- we will judge model by its error rate on a separate test set of data, not used to develop the model
- a probabilistic model returns a probability that the patient has the disease, not just a Boolean
Example: digit recognition

- 8-bit grayscale images of handwritten digits, 28 x 28 pixels
- goal is to guess the digit (i.e., 0, ..., 9) from the image
- 60,000 training images, 10,000 test images
- preprocessed by antialiasing, scaling and centering
- data originally by NIST, modified by Le Cun, 1998
Data

- Kaggle: datasets and competitions
- ImageNet dataset: 14m images
- Street view house numbers: 600,000 digit images
- Lyft Level 5 self-driving dataset
- many other large datasets
Software

- Torch, Keras, Theano, TensorFlow, and many others, ...
- Scikit-Learn, Spark/MLlib
- Flux, in Julia
- generic packages in R, Matlab, Python, Java, Julia ...
Course outline
The major parts of the course

1. *regression* — to predict one or more real values

2. *classification* — to predict one of a finite number of possible outcomes

3. *probabilistic supervised learning* — to predict a distribution of outcomes

4. *unsupervised learning* — to develop a data model

5. *optimization* — to fit or choose parameters in all of the models above