EE104 S. Lall and S. Boyd

Optimization

Sanjay Lall and Stephen Boyd

EE104
Stanford University

Optimization problems and algorithms

Optimization problem

minimize f(6)
» 6 € R? is the variable or decision variable

» f:R? = Ris the objective function

v

goal is to choose 8 to minimize f
» 0% is optimal means that for all 8, f(6) > f(6%)

f* = f(6*) is the optimal value of the problem

v

» optimization problems arise in many fields and applications, including machine learning

Optimality condition

optimal stationary point
® non-optimal stationary point

-4 -2 0 2 4

85(8)
96;

» let's assume that f is differentiable, i.e., partial derivatives exist
» if 6* is optimal, then Vf(6*) =0

» Vf(6) =0 is called the optimality condition for the problem

» there can be points that satisfy Vf(6) = 0 but are not optimal

» we call points that satisfy V f(6) = 0 stationary points

» not all stationary points are optimal

Solving optimization problems

» in some cases, we can solve the problem analytically
> e.g., least squares: minimize f(8) = ||X8 — y||3
» optimality condition is Vf(8) = 2X (X8 —y) =0
» this has (unique) solution 8* = (XTX) " 1XTy = XTy

(when columns of X are linearly independent)

b in other cases, we resort to an iterative algorithm that computes a sequence 8,62, ... with, hopefully,
f(6%) = f*ask = oo

Iterative algorithms

» iterative algorithm computes a sequence 6,62, ...
> 6% is called the kth iterate
» 6% is called the starting point

» many iterative algorithms are descent methods, which means

FOEFYY < F(6%), k=1,2,...

i.e., each iterate is better than the previous one

» this means that f(6*%) converges, but not necessarily to f*

Stopping criterion

» in practice, we stop after a finite number K of steps

» typical stopping criterion: stop if ||V £(8%)||2 < € or k = k™
» ¢ is a small positive number, the stopping tolerance

» k™ is the maximum number of iterations

» in words: we stop when 6* is almost a stationary point

» we hope that f(8%) is not too much bigger than f*

» or more realistically, that 8% is at least useful for our application

Non-heuristic and heuristic algorithms

> in some cases we know that f(8%) — f*, for any 6*
» in words: we'll get to a solution if we keep iterating

» called non-heuristic

» other algorithms do not guarantee that f(6%) — f*
» we can hope that even if f(6%) A f*, 6% is still useful for our application

» called heuristic

Convex functions

Huber deadzone log Huber

o 2~ N w & o o N

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0

convex convex non-convex

» a function f: R* — R is convex if for any 6, 6, and o with 0 < a < 1,
f(ad + (1 - a)f) <af(8) + (1 - a)f(6)

» roughly speaking, f has ‘upward curvature’

» ford =1, same as f"'(8) > 0 for all 6

Convex optimization

» optimization problem
minimize f(6)

is called convex if the objective function f is convex

» for convex optimization problem, V f(8) = 0 only for 8 optimal, i.e.,
all stationary points are optimal

» algorithms for convex optimization are non-heuristic

» i.e., we can solve convex optimization problems (exactly, in principle)

10

Convex ERM problems

» linear prediction model § = 8"z

» regularized empirical risk function f(8) = L£(8) + Ar(6), with A >0,
Zpe%f—y r(6) = q(6:) + - + q(6s)

» f is convex if loss penalty p and parameter penalty g functions are convex

» convex penalties: square, absolute, tilted absolute, Huber, logistic

» non-convex penalties: log Huber, squareroot

11

Gradient method

12

Gradient method

» assume f is differentiable

> at iteration 8", create affine (Taylor) approximation of f valid near 6*
f(6:6%) = £(6") + V£(6*)" (6 - 6)

> f(6;6%) ~ f(6) for 6 near 6*

» choose 657 to make F(6%11;6%) small, but with ||§** — 6*||2 not too large

» choose 6T to minimize f(6;6%) + 2|16 — 6*|13

» h® > 0is a trust parameter or step length or learning rate

» solution is 8¥F = 6% — *V £(6%)

» roughly: take step in direction of negative gradient

13

Gradient method update

9k+l

» choose to as minimizer of

£(68%) + V(") (6 - 9k)+W||9_9 112

» rewrite as X
h
£(65) + 5110 — 65) + KAV (@R — T I1V 5 (6
» first and third terms don’t depend on @

» middle term is minimized (made zero!) by choice

6 =6 —n*v5(6")

How to choose step length

» if h* is too large, we can have f(8¥') > f(6%)

» if h* is too small, we have f(8%T!) < f(6*) but progress is slow

» a simple scheme:
> if f(6FFT1) > F(6F), set hktl = hk /2, gF+1 = gk (a rejected step)
b if f(0FTL) < £(6%), set REtL = 1.2p* (an accepted step)

» reduce step length by half if it’s too long; increase it 20% otherwise

15

Gradient method summary

choose an initial ' € R* and k! >0 (e.g., 8' =0, h' =1)

fork=1,2,...,k™

1. compute Vf(6*); quit if |V F(6%)||2 is small enough
2. form tentative update %" = 6% — h*V F(6%)
3. if f(8%") < f(8%), set §FF = gtemt, pFF = 1.2p*

4. else set h* := 0.5r* and go to step 2

16

Gradient method convergence

» (assuming some technical conditions hold) we have

||Vf(9’°)||2 —0ask = o0

» ie., the gradient method always finds a stationary point

» for convex problems

» gradient method is non-heuristic

» for any starting point 8%, f(6%) — f* as k — oo

» for non-convex problems

» gradient method is heuristic

» we can (and often do) have F(6%) 4 f*

17

Example: Convex objective
4 35
3.0

25

0.5

0.0
-4 -2 0 2 4 0 5 10 15 20

91 k
» f(0) = %(ph"b(91 —1) +phUb(92 —1) +phUb(91 + 62 — 1))
» f is convex

» optimal point is 8* = (2/3,2/3), with f*=1/9

18

Example: Convex objective

— 10° \
107"
107"
10° \ .
- -2
- 10 .
-5
10
k = k -~
GO L - IV 561 107
10° - 107
1 n 5
10 10
13
10 -
Y 10°
0 5 10 15 20 0 5 10 15
k k

> f(6%) is a decreasing function of k, (roughly) exponentially

> ||[VF(6%)] = 0ask — o

20

19

Example: Non-convex objective

\ 4.0
s % a
2
2 35
L
+ ky30 |
P — f(6%) |
N ,‘¢ |\
f 25 4%
-2 / whasss:
a b '_-6;‘ HNNe e T
1/) 2.0
-4
15
-4 -2 0 2 4] 10 20 30 40 50
91 k

> f(8) = 5 (p"(6: +3) +p"(262 + 6) + p"" (61 + 62 — 1))
» f is sum of log-Huber functions, so not convex

» gradient algorithm converges, but limit depends on initial guess

60

20

Example: Non-convex objective

4
VI
L
= \
2
0 »
02 ¢ = a —~—\g
B 4
\‘
_2 1/
P A ois A
a 3, A et ——r Ve
Y &
-4

£(6%) .

21

Example: Non-convex objective

10
10°
107" .
10
10°
107
-5
10
ky _ fx v F(6* -3
fe%)—f \ IV £(8%)l2 10
-7
10
\ 107"
-9
10
107°
|0-11
10°

Gradient method for ERM

23

Gradient of empirical risk function

» predictor is § = go(z); we consider case of scalar y

» empirical risk is sum of terms for each data point
1w 1w
_ 2 aio gy L i i
= Y ouity) = n > Ugs(=*), v)
=1 =1

» convex if loss function £ is convex in first argument and predictor is linear, i.e., go(z) = 8"z

» gradient is sum of terms for each data point
Zz (90(z"), 4")Vga(z")

» ¢/(9,y) is derivative of £ with respect to its first argument §

» Vgg(z) is the gradient of go(z) with respect to 6

24

Evaluating gradient of empirical risk function

> assume linear predictor, gs(z) = 8"z, so Vge(z) =z

» gradient is
1= T iy
== 0
ng_l/f(z',y)z

» compute n-vector ¥ = X6*
» compute n-vector z¥, with entries z¥ = #/(3%, y*)

» compute d-vector VL(8%) = (1/n)X T 2*

» first and third steps are matrix-vector multiplication, each costing 2nd flops
» second step costs order n flops (dominated by other two)

» total is 4nd flops

25

Validation

0 train
test

RMS error

0 25 50 75 100 125 150 175 200

k

» can evaluate performance measure on train and test data sets as gradient method runs
» predictor is often good enough well before gradient descent has converged

» optimization is only a surrogate for what we want
(i.e., a predictor that predicts well on unseen data)

26

