Optimization

Sanjay Lall and Stephen Boyd

EE104 Stanford University

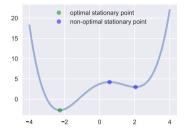
Optimization problems and algorithms

Optimization problem

minimize $f(\theta)$

- $\theta \in \mathbf{R}^d$ is the *variable* or *decision variable*
- $f: \mathbf{R}^d \to \mathbf{R}$ is the *objective function*
- goal is to choose θ to minimize f
- $heta^{\star}$ is *optimal* means that for all heta, $f(heta) \geq f(heta^{\star})$
- $f^{\star} = f(\theta^{\star})$ is the *optimal value* of the problem
- > optimization problems arise in many fields and applications, including machine learning

Optimality condition



- ▶ let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- if θ^* is optimal, then $\nabla f(\theta^*) = 0$
- $\blacktriangleright \nabla f(\theta) = 0$ is called the *optimality condition* for the problem
- ▶ there can be points that satisfy $\nabla f(\theta) = 0$ but are not optimal
- ▶ we call points that satisfy $\nabla f(\theta) = 0$ stationary points
- not all stationary points are optimal

Solving optimization problems

- ▶ in some cases, we can solve the problem analytically
- ▶ e.g., least squares: minimize $f(\theta) = ||X\theta y||_2^2$
 - optimality condition is $\nabla f(\theta) = 2X^{\mathsf{T}}(X\theta y) = 0$
 - ► this has (unique) solution $\theta^* = (X^T X)^{-1} X^T y = X^{\dagger} y$ (when columns of X are linearly independent)
- ▶ in other cases, we resort to an *iterative algorithm* that computes a sequence $\theta^1, \theta^2, \ldots$ with, hopefully, $f(\theta^k) \to f^*$ as $k \to \infty$

Iterative algorithms

- *iterative algorithm* computes a sequence $\theta^1, \theta^2, \ldots$
- $\triangleright \ \theta^k$ is called the kth *iterate*
- θ^1 is called the *starting point*
- many iterative algorithms are *descent methods*, which means

$$f(heta^{k+1}) < f(heta^k), \quad k=1,2,\ldots$$

i.e., each iterate is better than the previous one

 \blacktriangleright this means that $f(heta^k)$ converges, but not necessarily to f^\star

Stopping criterion

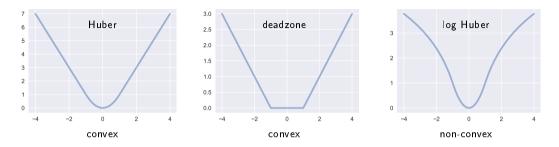
- ▶ in practice, we stop after a finite number K of steps
- \blacktriangleright typical stopping criterion: stop if $||
 abla f(heta^k)||_2 \leq \epsilon$ or $k=k^{\mathsf{max}}$
- \blacktriangleright ϵ is a small positive number, the stopping tolerance
- k^{max} is the maximum number of iterations
- ▶ in words: we stop when θ^k is almost a stationary point
- we hope that $f(\theta^K)$ is not too much bigger than f^\star
- ▶ or more realistically, that θ^K is at least useful for our application

Non-heuristic and heuristic algorithms

- in some cases we know that $f(\theta^k) \to f^*$, for any θ^1
- ▶ in words: we'll get to a solution if we keep iterating
- called non-heuristic

- \blacktriangleright other algorithms do not guarantee that $f(heta^k) o f^\star$
- ▶ we can hope that even if $f(\theta^k)
 i f^{\star}, \theta^k$ is still useful for our application
- called *heuristic*

Convex functions



▶ a function $f : \mathbf{R}^d \to \mathbf{R}$ is *convex* if for any θ , $\tilde{\theta}$, and α with $0 \le \alpha \le 1$,

$$f(lpha heta + (1-lpha) ilde{ heta}) \leq lpha f(heta) + (1-lpha) f(ilde{ heta})$$

- ▶ roughly speaking, f has 'upward curvature'
- ▶ for d=1, same as $f''(heta) \geq 0$ for all heta

Convex optimization

optimization problem

minimize $f(\theta)$

is called *convex* if the objective function f is convex

▶ for convex optimization problem, $\nabla f(\theta) = 0$ only for θ optimal, *i.e.*, all stationary points are optimal

- ▶ algorithms for convex optimization are non-heuristic
- ▶ *i.e., we can solve convex optimization problems* (exactly, in principle)

Convex ERM problems

- ▶ linear prediction model $\hat{y} = \theta^{\mathsf{T}} x$
- ▶ regularized empirical risk function $f(\theta) = \mathcal{L}(\theta) + \lambda r(\theta)$, with $\lambda \ge 0$,

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n p(heta^{ op} x^i - y^i), \qquad r(heta) = q(heta_1) + \dots + q(heta_d)$$

 \blacktriangleright f is convex if loss penalty p and parameter penalty q functions are convex

- ▶ convex penalties: square, absolute, tilted absolute, Huber, logistic
- non-convex penalties: log Huber, squareroot

Gradient method

Gradient method

- assume f is differentiable
- ▶ at iteration θ^k , create affine (Taylor) approximation of f valid near θ^k

$$\hat{f}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k)$$

- $\hat{f}(heta; heta^k) pprox f(heta)$ for heta near $heta^k$
- ▶ choose θ^{k+1} to make $\hat{f}(\theta^{k+1}; \theta^k)$ small, but with $||\theta^{k+1} \theta^k||_2$ not too large
- ▶ choose θ^{k+1} to minimize $\hat{f}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta \theta^k||_2^2$
- $\blacktriangleright h^k > 0$ is a trust parameter or step length or learning rate
- solution is $\theta^{k+1} = \theta^k h^k \nabla f(\theta^k)$
- roughly: take step in direction of negative gradient

Gradient method update

 \blacktriangleright choose θ^{k+1} to as minimizer of

$$f(\theta^k) + \nabla f(\theta^k)^T(\theta - \theta^k) + \frac{1}{2h^k} ||\theta - \theta^k||_2^2$$

▶ rewrite as

$$f(\theta^k) + \frac{1}{2h^k} ||(\theta - \theta^k) + h^k \nabla f(\theta^k)||_2^2 - \frac{h^k}{2} ||\nabla f(\theta^k)||_2^2$$

- first and third terms don't depend on θ
- ▶ middle term is minimized (made zero!) by choice

$$\theta = \theta^k - h^k \nabla f(\theta^k)$$

How to choose step length

- \blacktriangleright if h^k is too large, we can have $f(heta^{k+1}) > f(heta^k)$
- \blacktriangleright if h^k is too small, we have $f(heta^{k+1}) < f(heta^k)$ but progress is slow

a simple scheme:

▶ if
$$f(\theta^{k+1}) > f(\theta^k)$$
, set $h^{k+1} = h^k/2$, $\theta^{k+1} = \theta^k$ (a rejected step)

- ▶ if $f(\theta^{k+1}) \leq f(\theta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)
- ▶ reduce step length by half if it's too long; increase it 20% otherwise

Gradient method summary

choose an initial $heta^1 \in \mathbf{R}^d$ and $h^1 > 0$ $(e.g., \ heta^1 = 0, \ h^1 = 1)$

for $k=1,2,\ldots,k^{\max}$

- 1. compute $\nabla f(\theta^k)$; quit if $||\nabla f(\theta^k)||_2$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k
 abla f(\theta^k)$
- 3. if $f(\theta^{\text{tent}}) \leq f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
- 4. else set $h^k := 0.5h^k$ and go to step 2

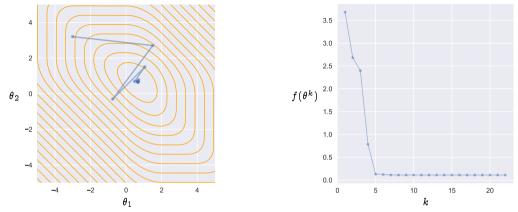
Gradient method convergence

(assuming some technical conditions hold) we have

 $||
abla f(heta^k)||_2 o 0$ as $k o \infty$

- ▶ *i.e.*, the gradient method always finds a stationary point
- ▶ for convex problems
 - gradient method is non-heuristic
 - \blacktriangleright for any starting point $heta^1$, $f(heta^k) o f^\star$ as $k o \infty$
- ▶ for *non-convex* problems
 - gradient method is heuristic
 - \blacktriangleright we can (and often do) have $f(heta^k)
 earrow f^\star$

Example: Convex objective

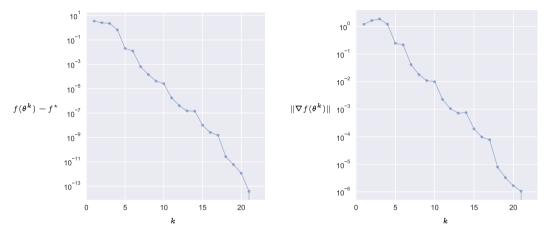


•
$$f(\theta) = \frac{1}{3} \left(p^{\mathsf{hub}}(\theta_1 - 1) + p^{\mathsf{hub}}(\theta_2 - 1) + p^{\mathsf{hub}}(\theta_1 + \theta_2 - 1) \right)$$

▶ f is convex

• optimal point is $\theta^{\star}=(2/3,2/3)$, with $f^{\star}=1/9$

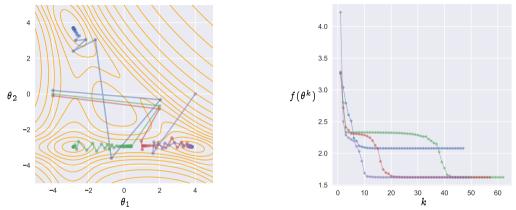
Example: Convex objective



• $f(\theta^k)$ is a decreasing function of k, (roughly) exponentially

 $ightarrow ||
abla f(heta^k)||
ightarrow 0$ as $k
ightarrow \infty$

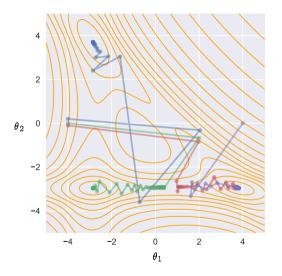
Example: Non-convex objective

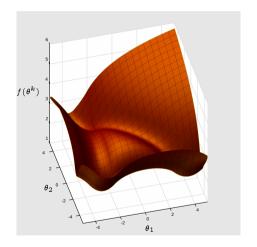


• $f(\theta) = \frac{1}{3} \left(p^{\mathsf{lh}}(\theta_1 + 3) + p^{\mathsf{lh}}(2\theta_2 + 6) + p^{\mathsf{lh}}(\theta_1 + \theta_2 - 1) \right)$

- ▶ f is sum of log-Huber functions, so not convex
- ▶ gradient algorithm converges, but limit depends on initial guess

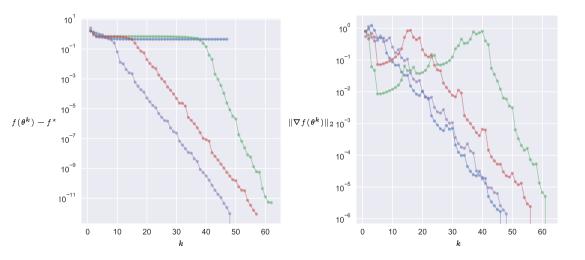
Example: Non-convex objective





21

Example: Non-convex objective



Gradient method for ERM

Gradient of empirical risk function

- \blacktriangleright predictor is $\hat{y} = g_{ heta}(x)$; we consider case of scalar y
- empirical risk is sum of terms for each data point

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n\ell(\hat{y}^i,y^i) = rac{1}{n}\sum_{i=1}^n\ell(g_ heta(x^i),y^i)$$

- convex if loss function ℓ is convex in first argument and predictor is linear, *i.e.*, $g_{\theta}(x) = \theta^{\mathsf{T}} x$
- gradient is sum of terms for each data point

$$abla \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell'(g_ heta(x^i),y^i)
abla g_ heta(x^i)$$

- \blacktriangleright $\ell'(\hat{y}, y)$ is derivative of ℓ with respect to its first argument \hat{y}
- $\triangleright \nabla g_{\theta}(x)$ is the gradient of $g_{\theta}(x)$ with respect to θ

Evaluating gradient of empirical risk function

$$lacksim$$
 assume linear predictor, $g_ heta(x)= heta^{\mathsf{T}}x$, so $abla g_ heta(x)=x$

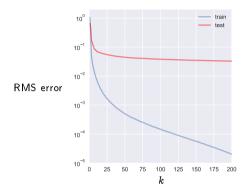
▶ gradient is

$$abla \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell'(heta^{ op} x^i, y^i) x^i$$

 \blacktriangleright compute *n*-vector $\hat{y}^k = X heta^k$

- \blacktriangleright compute *n*-vector z^k , with entries $z^k_i = \ell'(\hat{y}^k_i, y^i)$
- \blacktriangleright compute *d*-vector $abla \mathcal{L}(heta^k) = (1/n) X^T z^k$
- ▶ first and third steps are matrix-vector multiplication, each costing 2nd flops
- second step costs order n flops (dominated by other two)
- ▶ total is 4nd flops

Validation



- > can evaluate performance measure on train and test data sets as gradient method runs
- > predictor is often good enough well before gradient descent has converged
- optimization is only a surrogate for what we want (*i.e.*, a predictor that predicts well on unseen data)