Notation

Sanjay Lall and Stephen Boyd

EE104 Stanford University

Basic mathematical notation

we follow the (standard) notation in

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

(VMLS) by Boyd & Vandenberghe, with a few differences noted below

Vectors and matrices

• we denote a (column) vector using (a, b, c), or in vertical form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

- \blacktriangleright matrices are generally denoted using capitals, e.g., X, with entries X_{ij}
- some standard sets:
 - ▶ $a \in \mathbf{R}$ means a is a scalar (number)
 - $ightarrow x \in {
 m I\!R}^n$ means x is an n-vector
 - $lacksymbol{ } lacksymbol{ } Z \in {f R}^{p imes q}$ means $oldsymbol{ Z}$ is a p imes q matrix
- transpose of a matrix is Z^{T}
- if u is a (column) vector, u^{T} is a row vector
- inner product of vectors a and b is $a^{\mathsf{T}}b$
- 1 is the vector with all entries one

Vector norms

for a vector $x \in \mathbf{R}^n$ there are several common norms

 $\|x\|_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$ is called the 2-norm of a vector or Euclidean norm

 \blacktriangleright the most common norm, and so often written without the subscript as ||x||

- in VMLS, $||x||_2$ is written without the subscript
- $||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$ is called the *1-norm*
- ▶ $||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$ is called the ∞-*norm*
- ▶ all members of the *p*-norm family, defined as $||x||_p = (|x_1|^p + \cdots + |x_d|^p)^{1/p}$ for $p \ge 1$
- $||a b||_p$ is the *p*-norm distance between vectors *a* and *b*

Matrix norms

for a matrix $X \in \mathbf{R}^{m imes n}$, there are several common norms

• we use the *Frobenius norm*, denoted $||X||_F$

$$\|X\|_F = \left(\sum_{i,j} X_{ij}^2\right)^{1/2}$$

(in VMLS this is denoted without the subscript as ||X||)

- $||X||_2$ is the *spectral norm* or 2-*norm*, which we won't use in this course
- $||X||_1 = \sum_{i,j} |X_{ij}|$ is the 1-norm

Course specific notation

Feature mapping

- ▶ *u*: original independent variable or input (not necessarily a number or vector)
- \triangleright v: original dependent variable or output (not necessarily a number or vector)
- $\blacktriangleright \ x = \phi(u)$
 - $\blacktriangleright x$ is the feature vector in \mathbf{R}^d
 - $\blacktriangleright \phi$ is the feature mapping or embedding
- $\blacktriangleright \ y = \psi(v)$
 - \triangleright y is the target or output vector in \mathbf{R}^m
 - $\blacktriangleright \psi$ is the output feature mapping

Data sets

- \blacktriangleright x^1,\ldots,x^n and y^1,\ldots,y^n is a data set of n examples
- $\blacktriangleright x^i, y^i$ is the *i*th data pair
- n is the number of examples or samples
- associated data matrices

rows are feature and target vectors, transposed

Predictors

- ▶ $g_{\theta} : \mathbf{R}^{d} \to \mathbf{R}^{m}$ is a predictor
- $\hat{y} = g_{\theta}(x)$ is the prediction of y, given x
- $\blacktriangleright \ \theta \in \mathbf{R}^p$ is a vector of parameters in the predictor
- \blacktriangleright choosing θ based on some data is called training or fitting the predictor

Empirical risk minimization

- \blacktriangleright given data set x^i , y^i , $i=1,\ldots,n$
- \blacktriangleright prediction of y^i , given x^i , is $\hat{y}^i = g_ heta(x^i)$
- ▶ loss on *i*th data pair is $\ell(\hat{y}^i, y^i)$
- ▶ empirical risk is average loss over data set, $\mathcal{L}(\theta) = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i)$
- empirical risk minimization (ERM): choose θ to minimize $\mathcal{L}(\theta)$
- regularized ERM: choose θ to minimize $\mathcal{L}(\theta) + \lambda r(\theta)$
- ▶ r is regularizer function, which measures sensitivity of g_{θ}
- $\lambda > 0$ is a positive hyper-parameter