Notation

Sanjay Lall and Stephen Boyd

EE104
Stanford University

Basic mathematical notation

we follow the (standard) notation in

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares
(VMLS) by Boyd \& Vandenberghe, with a few differences noted below

Vectors and matrices

- we denote a (column) vector using (a, b, c), or in vertical form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
- matrices are generally denoted using capitals, e.g., X, with entries $X_{i j}$
- some standard sets:
- $a \in \mathbf{R}$ means a is a scalar (number)
- $x \in \mathbf{R}^{n}$ means x is an n-vector
- $Z \in \mathbf{R}^{p \times q}$ means Z is a $p \times q$ matrix
- transpose of a matrix is Z^{\top}
- if u is a (column) vector, u^{\top} is a row vector
- inner product of vectors a and b is $a^{\top} b$
- $\mathbf{1}$ is the vector with all entries one

Vector norms

for a vector $x \in \mathbf{R}^{n}$ there are several common norms

- $\|x\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$ is called the 2-norm of a vector or Euclidean norm
- the most common norm, and so often written without the subscript as $\|x\|$
- in VMLS, $\|x\|_{2}$ is written without the subscript
- $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$ is called the 1-norm
- $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$ is called the ∞-norm
- all members of the p-norm family, defined as $\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{d}\right|^{p}\right)^{1 / p}$ for $p \geq 1$
- $\|a-b\|_{p}$ is the p-norm distance between vectors a and b

Matrix norms

for a matrix $X \in \mathbf{R}^{m \times n}$, there are several common norms

- we use the Frobenius norm, denoted $\|X\|_{F}$

$$
\|X\|_{F}=\left(\sum_{i, j} X_{i j}^{2}\right)^{1 / 2}
$$

(in VMLS this is denoted without the subscript as $\|X\|$)

- $\|X\|_{2}$ is the spectral norm or 2-norm, which we won't use in this course
- $\|X\|_{1}=\sum_{i, j}\left|X_{i j}\right|$ is the 1-norm

Course specific notation

Feature mapping

- u: original independent variable or input (not necessarily a number or vector)
- v: original dependent variable or output (not necessarily a number or vector)
- $x=\phi(u)$
- x is the feature vector in R^{d}
- ϕ is the feature mapping or embedding
- $y=\psi(v)$
- y is the target or output vector in \mathbf{R}^{m}
- ψ is the output feature mapping

Data sets

- x^{1}, \ldots, x^{n} and y^{1}, \ldots, y^{n} is a data set of n examples
- x^{i}, y^{i} is the i th data pair
- n is the number of examples or samples
- associated data matrices

$$
X=\left[\begin{array}{c}
\left(x^{1}\right)^{T} \\
\vdots \\
\left(x^{n}\right)^{T}
\end{array}\right] \in \mathbf{R}^{n \times d}, \quad Y=\left[\begin{array}{c}
\left(y^{1}\right)^{T} \\
\vdots \\
\left(y^{n}\right)^{T}
\end{array}\right] \in \mathbf{R}^{n \times m}
$$

- rows are feature and target vectors, transposed

Predictors

$-g_{\theta}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{m}$ is a predictor

- $\hat{y}=g_{\theta}(x)$ is the prediction of y, given x
- $\theta \in \mathbf{R}^{p}$ is a vector of parameters in the predictor
- choosing θ based on some data is called training or fitting the predictor

Empirical risk minimization

- given data set $x^{i}, y^{i}, i=1, \ldots, n$
- prediction of y^{i}, given x^{i}, is $\hat{y}^{i}=g_{\theta}\left(x^{i}\right)$
- loss on i th data pair is $\ell\left(\hat{y}^{i}, y^{i}\right)$
- empirical risk is average loss over data set, $\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{y}^{i}, y^{i}\right)$
- empirical risk minimization (ERM): choose θ to minimize $\mathcal{L}(\theta)$
- regularized ERM: choose θ to minimize $\mathcal{L}(\theta)+\lambda r(\theta)$
- r is regularizer function, which measures sensitivity of g_{θ}
- $\lambda>0$ is a positive hyper-parameter

