Multi-Class Classification

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Multi-class classification
Multi-class classification

- *classification* is *multi-class* when raw output variable v is a *categorical* $v \in V = \{v_1, \ldots, v_K\}$ with $K > 2$

- v_i are called *classes* or *labels*

- we’ll also denote them as $1, \ldots, K$

- examples:
 - $V = \{\text{YES, MAYBE, NO}\}$
 - $V = \{\text{ALBANIA, AZERBAIJAN, ...}\}$
 - $V = \{\text{HINDI, TAMIL, ...}\}$
 - $V = \text{set of English words in some dictionary}$
 - $V = \text{set of } m! \text{ possible orders of } m \text{ horses in a race}$

- a *classifier* predicts label \hat{v} given raw input u

- called a *K-class classifier*
Confusion matrix
Confusion matrix

- measure performance of a specific predictor on a data set with \(n \) records
- for each data record \(i \), there are \(K^2 \) possible values of \((\hat{v}^i, v^i)\)
- \(K \times K \) confusion matrix is defined by
 \[
 C_{ij} = \# \text{ records with } \hat{v} = v_i \text{ and } v = v_j
 \]
 - entries in \(C \) add up to \(n \)
 - column sums of \(C \) give number of records in each class in the data set
 - \(C_{ii} \) is the number of times we predict \(v_i \) correctly
 - \(C_{ij} \) for \(i \neq j \) is the number of times we mistook \(v_j \) for \(v_i \)
 - there are \(K(K-1) \) different types of errors we can make
 - there are \(K(K-1) \) different error rates, \(C_{ij}/n, i \neq j \)
Neyman-Pearson error

- \(E_j = \sum_{i \neq j} C_{ij} \) is number of times we mistook \(v_j \) for another class
- \(E_j/n \) is the error rate of mistaking \(v_j \)
- we will scalarize these \(K \) error rates using a weighted sum
- the **Neyman-Pearson error** is

\[
\sum_{j=1}^{K} \kappa_j E_j = \sum_{i \neq j} \kappa_j C_{ij}
\]

where \(\kappa \) is a weight vector with nonnegative entries

- \(\kappa_j \) is how much we care about mistaking \(v_j \)

- for \(\kappa_j = 1 \) for all \(i \), Neyman-Pearson error is the *error rate*
Embedding
Embedding ν

- we embed raw output $\nu \in \mathcal{V}$ into \mathbb{R}^m as $y = \psi(\nu) \in \mathbb{R}^m$ (cf. boolean classification, where we embed ν into \mathbb{R})

- we can describe ψ by the K vectors $\psi_1 = \psi(\nu_1), \ldots, \psi_K = \psi(\nu_K)$ (i.e., just say what vector in \mathbb{R}^m each $\nu \in \mathcal{V}$ maps to)

- we call the vector ψ_i the representative of ν_i

- we call the set $\{\psi_1, \ldots, \psi_K\}$ the constellation

- examples:
 - TRUE $\mapsto 1$, FALSE $\mapsto -1$
 - YES $\mapsto 1$, MAYBE $\mapsto 0$ NO $\mapsto -1$
 - YES $\mapsto (1, 0)$, MAYBE $\mapsto (0, 0)$, NO $\mapsto (0, 1)$
 - APPLE $\mapsto (1, 0, 0)$, ORANGE $\mapsto (0, 1, 0)$, BANANA $\mapsto (0, 0, 1)$
 - (Horse 3, Horse 1, Horse 2) $\mapsto (3, 1, 2)$
 - word2vec (maps 1M words to vectors in \mathbb{R}^{300})
One-hot embedding

- a simple generic embedding of K classes into \mathbb{R}^K
 \[\psi(v_i) = \psi_i = e_i \]

- variation (embedding K classes into \mathbb{R}^{K-1}):
 - choose one of the classes as the *default*, and map it to $0 \in \mathbb{R}^{K-1}$
 - map the others to the unit vectors $e_1, \ldots, e_{K-1} \in \mathbb{R}^{K-1}$
Nearest neighbor un-embedding

- given prediction $\hat{y} \in \mathbb{R}^m$, we *un-embed* to get \hat{v}
- we denote our un-embedding using the symbol $\psi^\dagger : \mathbb{R}^m \rightarrow \mathcal{V}$
- we *define* the un-embedding function ψ^\dagger as
 \[
 \psi^\dagger(\hat{y}) = \arg\min_{v \in \mathcal{V}} ||\hat{y} - \psi(v)||
 \]
 (we can break ties any way we like)
- *i.e.*, we choose the raw value associated with the nearest representative
- called *nearest neighbor un-embedding*
Un-embedding boolean

- **embed** \(\text{TRUE} \mapsto 1 = \psi_1 \) and \(\text{FALSE} \mapsto -1 = \psi_2 \)

- **un-embed via**

\[
\psi^\dagger(\hat{y}) = \begin{cases}
\text{TRUE} & \hat{y} \geq 0 \\
\text{FALSE} & \hat{y} < 0
\end{cases}
\]
Un-embedding yes, maybe, no

- embed YES $\mapsto (1, 0)$, MAYBE $\mapsto (0, 0)$, NO $\mapsto (0, 1)$
- un-embed via

$$\psi^\dagger(\hat{y}) = \begin{cases}
\text{YES} & \hat{y}_1 > 1/2, \hat{y}_1 > \hat{y}_2 \\
\text{MAYBE} & \hat{y}_1 < 1/2, \hat{y}_2 < 1/2 \\
\text{NO} & \hat{y}_2 > 1/2, \hat{y}_1 < \hat{y}_2
\end{cases}$$

(can choose any value on boundaries)
Un-embedding one-hot

- one-hot embedding: \(\psi_i = e_i, \ i = 1, \ldots, K \)
- un-embed via \(\psi^\dagger(y) = \arg\min_i \|y - e_i\|_2 = \arg\max_i y_i \)
- intuition:
 - you can subtract one from one component of a vector
 - to get the smallest norm
 - best choice is the largest entry of the vector
Voronoi diagram

- ψ^\top partitions \mathbb{R}^m into the K regions $\{y \mid \psi^\top(y) = v_i\}$, for $i = 1, \ldots, K$

- regions are polyhedra

- called Voronoi diagram

- boundaries between regions are perpendicular bisectors between pairs of representatives ψ_i, ψ_j
Margins
Margins and decision boundaries

- given prediction $\hat{y} \in \mathbb{R}^m$, we un-embed via $\hat{u} = \psi^\dagger(\hat{y})$

- $\psi^\dagger(\hat{y}) = v_j$ when \hat{y} is closer to ψ_j than the other representatives, i.e.,

$$||\hat{y} - \psi_j|| < ||\hat{y} - \psi_i|| \text{ for } i \neq j$$

- define the negative margin function M_{ij} by

$$M_{ij}(\hat{y}) = \left(||\hat{y} - \psi_j||^2 - ||\hat{y} - \psi_i||^2 \right) / (2||\psi_i - \psi_j||)$$

$$= \frac{2(\psi_i - \psi_j)^T \hat{y} + ||\psi_j||^2 - ||\psi_i||^2}{2||\psi_i - \psi_j||}$$

- so $\psi^\dagger(\hat{y}) = v_j$ when $M_{ij}(\hat{y}) < 0$ for all $i \neq j$
Margins and decision boundaries

- linear equation

\[M_{ij}(\hat{y}) = 0 \]

defines a **hyperplane** called the **perpendicular bisector** between \(\psi_i \) and \(\psi_j \)

- it is the **decision boundary** between \(\psi_i \) and \(\psi_j \)

- \(\hat{y} \) is the correct prediction, when \(v = v_j \), if

\[\max_{i \neq j} M_{ij}(\hat{y}) < 0 \]
Margins and decision boundaries

- boolean: $\psi_1 = -1$ and $\psi_2 = 1$ and

 $$M_{21}(\hat{y}) = \hat{y} \quad M_{12}(\hat{y}) = -\hat{y}$$

- one-hot: $\psi_j = e_j$ for all j, so

 $$M_{ij} = \frac{y_i - y_j}{\sqrt{2}}$$
Margins

margins M_{21} and M_{31}

margins M_{12} and M_{32}

margins M_{13} and M_{23}
Vector ERM
Vector prediction

- after embedding raw data u and v we have data pair (x, y)
- the target y is a vector (which takes only the values ψ_1, \ldots, ψ_K)
- predictor is a function $g : \mathbb{R}^d \rightarrow \mathbb{R}^m$
- our final (raw) prediction is $\hat{v} = \psi^\dagger(\hat{y})$
Vector linear predictor

- **vector linear predictor** has form $\hat{y} = g(x) = \theta^T x$
- same form as when y is a scalar, but here θ is a $d \times m$ parameter matrix
- θ_{23} is how much x_2 affects \hat{y}_3
- reduces to the usual parameter vector when $m = 1$ (i.e., y is scalar)
Vector ERM

- linear model $\hat{y} = \theta^T x$, $\theta \in \mathbb{R}^{d \times m}$
- choose parameter matrix θ to minimize $L(\theta) + \lambda r(\theta)$
- $L(\theta)$ is the empirical loss

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\hat{y}^i, y^i) = \frac{1}{n} \sum_{i=1}^{n} l(\theta^T x^i, y^i)$$

with loss function $l : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ (i.e., l takes two arguments, each in \mathbb{R}^m)

- $\lambda \geq 0$ is regularization parameter
- $r(\theta)$ is the regularizer
Matrix Regularizers
Matrix regularizers

- general penalty regularizer: \(r(\theta) = \sum_{i=1}^{d} \sum_{j=1}^{m} q(\theta_{ij}) \)

- sum square regularizer: \(r(\theta) = ||\theta||^2_F = \sum_{i=1}^{d} \sum_{j=1}^{m} \theta_{ij}^2 \)

- the Frobenius norm of a matrix \(\theta \) is \(\left(\sum_{i,j} \theta_{ij}^2 \right)^{1/2} \)

- \(\ell_1 \) regularizer: \(r(\theta) = ||\theta||_1 = \sum_{i=1}^{d} \sum_{j=1}^{m} |\theta_{ij}| \)
Multi-Class Loss Functions
Multi-class loss functions

- $l(\hat{y}, y)$ is how much prediction \hat{y} bothers us when observed value is y
- but the only possible values of y are ψ_1, \ldots, ψ_K
- so we can simply give the K functions of \hat{y}
 $$l_j(\hat{y}) = l(\hat{y}, \psi_j), \quad j = 1, \ldots, K$$
- $l_j(\hat{y})$ is how much we dislike predicting \hat{y} when $y = \psi_j$
Neyman-Pearson loss

- Neyman-Pearson loss is
 \[l_j^{NP}(\hat{y}) = \begin{cases}
 0 & \text{if } \max_{i \neq j} M_{ij} < 0 \\
 \kappa_j & \text{otherwise}
 \end{cases} \]

- \[l_j^{NP}(\hat{y}) \] is constant on each Voronoi region, zero on \(\{ \hat{y} | \psi^\dagger(\hat{y}) = v_j \} \)

- average Neyman-Pearson loss \(L^{NP}(\theta) \) is the Neyman-Pearson error

- but \(\nabla L^{NP}(\theta) \) is either zero or undefined

- so there’s no gradient to tell us which way to move \(\theta \) to reduce \(L(\theta) \)
Proxy loss

- we will use a *proxy loss* that
 - approximates, or at least captures the flavor of, the Neyman-Pearson loss
 - is more easily optimized (e.g., is convex or has nonzero derivative)

- we want a proxy loss function
 - with $l_j(\hat{y})$ small whenever $M_{ij} < 0$ for $i \neq j$
 - and not small otherwise
 - which has other nice characteristics, e.g., differentiable or convex
Multi-class hinge loss

- **hinge loss** is

\[l_j(\hat{y}) = \kappa_j \max_{i \neq j} (1 + M_{ij}(\hat{y}))_+ \]

- \(l_j(\hat{y}) \) is zero when the correct prediction is made, with a margin at least one

- convex but not differentiable

- for boolean embedding with \(\psi_1 = -1, \psi_2 = 1 \), reduces to

\[l_1(\hat{y}) = \kappa_1 (1 + \hat{y})_+, \quad l_2(\hat{y}) = \kappa_2 (1 - \hat{y})_+ \]

usual hinge loss when \(\kappa_1 = 1 \)
Multi-class hinge loss
Multi-class logistic loss

- **logistic loss** is

\[l_j(\hat{y}) = \kappa_j \log \left(\sum_{i=1}^{K} \exp(M_{ij}) \right) \]

- recall that \(M_{jj} = 0 \)

- convex and differentiable

- for boolean embedding with \(\psi_1 = -1, \psi_2 = 1 \), reduces to

\[l_1(\hat{y}) = \kappa_1 \log(1 + e^{\hat{y}}), \quad l_2(\hat{y}) = \kappa_2 \log(1 + e^{-\hat{y}}) \]

usual logistic loss when \(\kappa_1 = 1 \)
Multi-class logistic loss

![Graphs showing multi-class logistic loss](image)

- **Loss l_1**
- **Loss l_2**
- **Loss l_3**
Soft-max function

- the function $f : \mathbb{R}^n \to \mathbb{R}$

$$f(x) = \log \sum_{i=1}^{n} \exp(x_i)$$

is called the *log-sum-exp* function

- it is a convex differentiable approximation to the max function

- we have

$$\max\{x_1, \ldots, x_n\} \leq f(x) \leq \max\{x_1, \ldots, x_n\} + \log(n)$$
Example: Iris
Example: Iris

- famous example dataset by Fisher, 1936
- measurements of 150 plants, 50 from each of 3 species
- iris setosa, iris versicolor, iris virginica
- four measurements: sepal length, sepal width, petal length, petal width
Example: Iris
Classification with two features

- using only sepal_length and sepal_width
- one-hot embedding, multi-class logistic loss

Confusion matrix $C = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 38 & 13 \\ 0 & 12 & 37 \end{bmatrix}$
Classification with two features

- let θ_i be the ith column of θ
- plot shows $\theta_i^T \phi^{-1}(u)$ as function of u
- one-hot embedding of v, so un-embedding is $\hat{v} = \arg \max_i \theta_i^T x$
Example: Iris confusion matrix

- we train using multi-class logistic loss, with $\kappa_i = i$ for all i
- for this example, train using all the data
- resulting confusion matrix is

$$C' = \begin{bmatrix}
50 & 0 & 0 \\
0 & 49 & 1 \\
0 & 1 & 49
\end{bmatrix}$$