Non-Quadratic Losses

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Penalty functions and error histograms
Loss and penalty functions

- empirical risk (or average loss) is $L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{y}^i, y^i)$, with $\hat{y}^i = g_\theta(x^i)$
- the loss function $\ell(\hat{y}, y)$ penalizes deviation between the predicted value \hat{y} and the observed value y
- common form for loss function: $\ell(\hat{y}, y) = p(\hat{y} - y)$
- p is the *penalty function*
- e.g., the square penalty $p^{\text{sqr}}(r) = r^2$ (for scalar y)
- $r = \hat{y} - y$ is the *prediction error* or *residual*
- for scalar y, $r > 0$ is *over-estimating*; $r < 0$ is *under-estimating*
Penalty functions

- the penalty function tells us how much we object to different values of prediction error
- usually $p(0) = 0$ and $p(r) \geq 0$ for all r
- if p is symmetric, i.e., $p(-r) = p(r)$, we care only about the magnitude (absolute value) of prediction error
- if p is asymmetric, i.e., $p(-r) \neq p(r)$, it bothers us more to over- or under-estimate
Square versus absolute value penalty

- For square penalty \(p^{sqr}(r) = r^2 \)
 - For small prediction errors, penalty is very small (small squared)
 - For large prediction errors, penalty is very large (large squared)

- For absolute penalty \(p^{abs}(r) = |r| \)
 - For small prediction errors, penalty is large (compared to square)
 - For large prediction errors, penalty is small (compared to square)
tilted absolute penalty, with $\tau \in [0, 1]$, is
\[
p^{\text{tilt}}_\tau(r) = \begin{cases}
-\tau r & r < 0 \\
(1 - \tau) r & r \geq 0
\end{cases}
\]

for $\tau = 1/2$, same as absolute penalty (scaled by 1/2); same penalty for under-estimating and over-estimating

for $\tau > 1/2$, worse (higher penalty) to under-estimate than over-estimate

for $\tau < 1/2$, worse (higher penalty) to over-estimate than under-estimate
Predictors and choice of penalty function

- penalty function expresses how you feel about large, small, positive, or negative prediction errors
- different choices of penalty function yield different predictor parameters
- choice of penalty function *shapes* the histogram of prediction errors, *i.e.*,

\[r^1, \ldots, r^n \]

(usually divided into bins and displayed as bar graph distribution)
artificial data with $n = 300$, $m = 1$, and $d = 31$, using 50/50 test/train split

$r^i = \theta^T x^i - y^i$, first feature is constant; plots show histogram of residuals r^1, \ldots, r^n,

tilted loss results in distribution with most residuals $r^i < 0$, i.e., predictor prefers $\hat{y}^i < y^i$
Robust fitting
Outliers

- in some applications, a few data points are ‘way off’, or just ‘wrong’
- occurs due to transcription errors, error in decimal point position, etc.
- these points are called outliers
- even a few outliers in a data set can result in ERM picking a poor predictor
- several standard methods are used to remove outliers, or reduce their impact
- one simple method:
 - create predictor from data set
 - flag data points with large prediction errors as outliers
 - remove them from the data set and repeat
- it’s also possible to use a penalty function that is less sensitive to outlier data points
Robust penalty functions

- we say a penalty function is *robust* if it has low sensitivity to outliers
- robust penalty functions grow more slowly for large prediction error values than the square penalty
- and so ‘allow’ the predictor to have a few large prediction errors (presumably for the outliers)
- so they handle outliers more gracefully
- a *robust predictor* might fit, e.g., 98% of the data very well
the \textit{Huber} penalty function is

\[
p_{\text{hub}}(r) = \begin{cases}
 r^2 & \text{if } |r| \leq \alpha \\
 \alpha(2|r| - \alpha) & \text{if } |r| > \alpha
\end{cases}
\]

\(\alpha\) is a positive parameter

\(\text{quadratic for small } r, \text{ affine for large } r, \text{ with transition at value } r = \pm \alpha\)
Huber loss

- linear growth for large r makes fit less sensitive to outliers
- ERM with Huber loss is called a robust prediction method
quadratic for small y, logarithmic for large y

$$p_{\text{dh}}(y) = \begin{cases}
 y^2 & \text{if } |y| \leq \alpha \\
 \alpha^2(1 - 2 \log(\alpha) + \log(y^2)) & \text{if } |y| > \alpha
\end{cases}$$

diminishing incremental penalty at large y
even less sensitive to outliers than Huber
Error histogram

square

Huber

log Huber

fit

training error

test error
Quantile regression
Quantile regression

- ERM or RERM with tilted penalty p_t^{tilt} is called *quantile regression*

- intuition:
 - $\tau > 1/2$ makes it worse to under-estimate, so predictions are ‘high’
 - $\tau < 1/2$ makes it worse to over-estimate, so predictions are ‘low’
Connection to quantiles

- assume the predictor has an offset (say, θ_1) that is \textit{not} regularized
 - $g_\theta(x) = \theta_1 + \tilde{g}_\theta(x)$, where \tilde{g}_θ does not depend on θ_1 (e.g., linear predictor with $x_1 = 1$)
 - regularizer $r(\theta)$ does not depend on θ_1 (e.g., ridge regression with $r(\theta) = \theta_2^2 + \cdots + \theta_p^2$)

- then on the training set, with RERM predictor
 - the $(1 - \tau)$-quantile of residuals is zero
 - \textit{i.e.}, the fraction of data for which we over-estimate ($r > 0$) is τ

- hence the name quantile regression

- if predictor generalizes, we’d expect the fraction of test data for which we over-estimate is around τ

- can create predictors for multiple τs, which gives multiple quantile estimates for a given x
Why the \((1 - \tau)\)-quantile of residuals is zero

- Let's fix \(\theta_2, \ldots, \theta_p\)

- \(\theta_1\) must minimize the function \(\mathcal{L}(\theta) + \lambda r(\theta)\)

- \(r(\theta)\) doesn't depend on \(\theta_1\), so \(\theta_1\) must minimize

\[
\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} p_{\tau}^{\text{tilt}}(\theta_1 + \tilde{g}_\theta(x^i) - y^i)
\]

- \(\tilde{g}_\theta(x)\) does not depend on \(\theta_1\), so \(\theta_1\) is the \(\tau\)-quantile of \(y^i - \tilde{g}_\theta(x^i)\), \(i = 1, \ldots, n\)

- So fraction of \(i\) for which \(y^i - \tilde{g}_\theta(x^i) \leq \theta_1\) is around \(\tau\)

- And so, fraction of \(i\) for which \(r^i = \hat{y}^i - y^i = \theta_1 + \tilde{g}_\theta(x^i) - y^i \geq 0\) is around \(\tau\)

- I.e., fraction of data points for which we over-estimate is around \(\tau\)
Example

plots show histogram of residuals training data, for $\tau = 0.1$, 0.5, 0.9
we'll fit straight line (affine) prediction model using loss $l(\hat{y}, y) = p^\text{tit}(\hat{y} - y)$, $\tau = 0.1, 0.5, 0.9$
Example: Quantile straight line regression

- three quite different predictors
Example: Quantile straight line regression
Summary
loss function is often expressed as a penalty function of the residual \(r = \hat{y} - y \)

the loss function expresses how we object to different values of residual

different choices of loss function lead to different ERM predictors

specific applications include

- robust fitting: fitting data with some outliers
- quantile regression: fitting data with a specified fraction of over-estimation