
EE104 S. Lall and S. Boyd

House prices example

Sanjay Lall and Stephen Boyd

EE104
Stanford University

1

The data set

I sale prices of n = 1456 homes in Ames, Iowa from 2006 to 2010

I goal is to predict log(price)

I performance metric is RMS error on test set

I e.g., RMS error of 0:1 means (roughly) we can predict house price within factor e0:1 (about 10:5%)

2

Scatter plot of price versus living area

1000 2000 3000

10.5

11.0

11.5

12.0

12.5

13.0

living area

log(price)

3

Embedding

I v = price, let y = log(v)

I 9 numerical fields are embedded unchanged

I year built, area of living space, area of first floor, area of second floor, area of garage, area of wooden deck,
area of basement, year of last remodel, area of lot

I 8 ordinal fields are embedded as integers

I number of bedrooms, number of kitchens, number of fireplaces, number of half bathrooms, number of
rooms, condition (scored 1-10), quality of materials and finish (scored 1-10), car capacity of garage

4

Embedding

I kitchen quality: on likert scale

excellent, good, typical, fair

embedded as integer between 1 and 5

I building type: 5 categories, one-hot embedded

single-family townhouse end unit two-family-conversion

townhouse inside unit duplex

I neighborhood: 25 categories, one-hot embedded

I results in matrix X0 2 Rn�48

5

Standardization and data splitting

I split randomly 80/20 into training and test sets

I gives Xtrain
0 2 R1165�48, Y train

2 R1165 and Xtest
0 2 R291�48 and Y test

2 R291

I use training set to compute means and standard deviations of each column of Xtrain
0

I use means and stds to standardize Xtrain
0 and Xtest

0

I both datasets are standardized using the same means/stds (from the training set)

I some columns of Xtrain
0

may have zero standard deviation (e.g. categoricals which occur rarely); special
case since standardization formula does not apply

I append a constant feature; letXtrain =
�
1 standardize(Xtrain

0)
�
andXtest =

�
1 standardize(Xtest

0)
�

6

Ridge regression

I choose a range of � values, logarithmically spaced between 10�3 and 103

I for each �, compute

I RERM: the � that minimizes 1

n
kXtrain

� � Y
traink2 + �k�2:dk

2

I the training error rms(Xtrain
� � Y

train)

I the test error rms(Xtest
� � Y

test)

7

Ridge regression

10
3

10
2

10
1

10
0

10
1

10
2

10
3

0.15

0.20

0.25

0.30

0.35

0.40 train
test

�

L(�)

10
3

10
2

10
1

10
0

10
1

10
2

10
3

0.02

0.00

0.02

0.04

0.06

0.08

�

�2:d

I no benefit of regularization in this case

I minimum rms error on test set is about 0:12

I corresponds to about 13% error in house price

8

10.5 11.0 11.5 12.0 12.5 13.0
10.5

11.0

11.5

12.0

12.5

13.0

y

ŷ

Results

I plot shows all test points

9

0 10 20 30 40 50

0.02

0.00

0.02

0.04

0.06

0.08

i

�i

Important features

I �2: year built

I �3: area of living space

I �4: area of first floor

I �5: area of second floor

I �8: area of basement

I �16: condition

I �17: quality of materials and finish

I difference between best and worst
neighborhoods is 4% price

10

Julia

D, header = loaddata()
n = size(D,1)
Y = embedy(D, header)
X0 = embedx(D, header)
trainrows, testrows = randomsplit(n)
Xtrain0, Ytrain, Xtest0, Ytest = applysplit(X0, Y, trainrows, testrows)
means, stds = getstatistics(Xtrain0)
Xtrain = standardizeplusone(Xtrain0, means, stds)
Xtest = standardizeplusone(Xtest0, means, stds)
lambdas = 10 .^ range(-3,3,length=50)
thetas = [ridgeregressionconstfeature(Xtrain, Ytrain, lambda) for lambda in lambdas]
train_errors = [rmse(Xtrain*theta, Ytrain) for theta in thetas]
test_errors = [rmse(Xtest*theta, Ytest) for theta in thetas]

11

Julia

function randomsplit(n, trainfrac=0.8)
ntrain = convert(Int64, round(trainfrac*n))
p = Random.randperm(n)
trainrows = sort(p[1:ntrain])
testrows = sort(p[ntrain+1:n])
return trainrows, testrows

end

function applysplit(X, Y, trainrows, testrows)
return X[trainrows,:], Y[trainrows,:], X[testrows,:], Y[testrows,:]

end

12

Julia

function getstatistics(U)
means = [Statistics.mean(x) for x in eachcol(U)]
stds = [Statistics.std(x) for x in eachcol(U)]
return means, stds

end

13

Julia

function standardizeplusone(X,means,stds)
Z = zeros(size(X))
for i=1:size(X,2)

if stds[i] != 0
Z[:,i] = (X[:,i] .- means[i])/stds[i]

else
Z[:,i] = X[:,i] .- means[i]

end
end
n = size(X,1)
Z = [ones(n,1) Z]
return Z

end

14

Julia

function embedx(D, header)
field(name) = getdatafield(D, header, name)
realf(name) = stringtonumber.(field(name))
X = hcat(realf("YearBuilt"), # numeric

realf("GrLivArea"), # numeric
realf("1stFlrSF"), # numeric
...

realf("GarageCars"), # ordinal 0-4
unlikert.(field("KitchenQual")), # ordinal, but "Ex", "Gd", "TA", "Fa", "Po"
onehot(field("Neighborhood")), # 25 different names
onehot(field("BldgType")), # 5 different types

)
return X

end

15

Julia

function unlikert(s)
d = Dict("Ex" =>5, "Gd" =>4, "TA" => 3, "Fa" => 2, "Po" => 1)
return d[s]

end

embedy(D, header) = log.(stringtonumber.(getdatafield(D, header, "SalePrice")))

16

Julia

takes a list length n, e.g. u = ["hi", "lo", "hi", "med", "lo"]
returns a matrix Y which is n by d
function onehot(u)

categories = unique(u)
catnum(s) = findfirst(x -> x==s, categories)
n = length(u)
K = length(categories)
Y = zeros(n,K)
for i=1:n

c = catnum(u[i])
Y[i,c] = 1

end
return Y

end

17

Julia

function ridgeregressionconstfeature(X,Y,lambda)
n,d = size(X)
m = size(Y,2)
E = [zeros(d-1,1) I(d-1)]
A = [X; sqrt(lambda*n)*E]
B = [Y; zeros(d-1,m)]
theta = A\B

end

18

