Features

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Records and embedding
Raw data

- **raw data** pairs are \((u, v)\), with \(u \in U, v \in V\)
- \(U\) is set of all possible input values
- \(V\) is set of all possible output values
- each \(u\) is called a **record**
- typically a record is a tuple, or list, \(u = (u_1, u_2, \ldots, u_r)\)
- each \(u_i\) is a **field** or **component**, which has a **type**, e.g., real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- e.g., a record for a house for sale might consist of

 (address, photo, description, house/apartment?, lot size, …, # bedrooms)
Feature map

- learning algorithms are applied to \((x, y)\) pairs,

\[
x = \phi(u), \quad y = \psi(v)
\]

- \(\phi : \mathcal{U} \to \mathbb{R}^d\) is the feature map for \(u\)

- \(\psi : \mathcal{V} \to \mathbb{R}^m\) is the feature map for \(v\)

- feature maps transform records into vectors

- feature maps usually work on each field separately,

\[
\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r))
\]

- \(\phi_i\) is an embedding of the type of field \(i\) into a vector
Embeddings

- embedding puts the different field types on an equal footing, i.e., vectors
- some embeddings are simple, e.g.,
 - for a number field \((\mathcal{U} = \mathbb{R})\), \(\phi_i(u_i) = u_i\)
 - for a Boolean field, \(\phi_i(u_i) = \begin{cases} 1 & u_i = \text{TRUE} \\ -1 & u_i = \text{FALSE} \end{cases}\)
 - color to \((R, G, B)\)
- others are more sophisticated
 - text to TFIDF histogram
 - word2vec (maps words into vectors)
 - pre-trained neural network for images (maps images into vectors)

(more on these later)
Faithful embeddings

A faithful embedding satisfies

- $\phi(u)$ is near $\phi(\tilde{u})$ when u and \tilde{u} are ‘similar’
- $\phi(u)$ is not near $\phi(\tilde{u})$ when u and \tilde{u} are ‘dissimilar’

- Lefthand concept is vector distance
- Righthand concept depends on field type, application

- Interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies

- We will see later how such embeddings can be constructed
Examples

- geolocation data: $\phi(u) = (\text{Lat}, \text{Long})$ in \mathbb{R}^2 or embed in \mathbb{R}^3 (if data points are spread over planet)
- day of week (each day is ‘similar’ to the day before and day after)
Example: word2vec

- word2vec maps a dictionary of 3 million words (and short phrases) into \mathbb{R}^{300}
- developed from a data set from Google News containing 100 billion words
- assigns words that frequently appear near each other in Google News to nearby vectors in \mathbb{R}^{300}
Example: word2vec

(showing only x_1 and x_2, for a selection of words associated with emotion)
Imagenet embedding

- Imagenet is an open image database with 14m labeled images in 1000 classes
- vgg16 maps images u (224 × 224 pixels with R,G,B components) to $x \in \mathbb{R}^{4096}$
- vgg16 was originally developed to classify the image labels
- repurposed as general image feature mapping
- vgg16 has neural network form with 16 layers, with input u, output x
images u^i for $i = 1, 2, \ldots, 6$ are embedded to $x^i = \phi(u^i) \in \mathbb{R}^{4096}$

matrix of pairwise distances $d_{ij} = \|x^i - x^j\|_2$

\[
d = \begin{bmatrix}
0 & 109.7 & 97.9 & 96.2 & 107.4 & 103.0 \\
0 & 63.9 & 71.6 & 109.4 & 109.2 \\
0 & 69.4 & 101.5 & 101.4 \\
0 & 96.5 & 96.8 \\
0 & 86.6 \\
0
\end{bmatrix}
\]
Standardized embeddings

we usually assume that an embedding is \textit{standardized}

- entries of $\phi(u)$ are centered around 0
- entries of $\phi(u)$ have RMS value around 1
- roughly speaking, entries of $\phi(u)$ range over ± 1

- with standardized embeddings, entries of feature map

$$
\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r))
$$

are all comparable, \textit{i.e.}, centered around zero, standard deviation around one

- $\text{rms}(\phi(u) - \phi(\tilde{u}))$ is reasonable measure of how close records u and \tilde{u} are
Standardization or \(z \)-scoring

- suppose \(\mathcal{U} = \mathbb{R} \) (field type is real numbers)
- for data set \(u^1, \ldots, u^n \in \mathbb{R} \)

\[
\bar{u} = \frac{1}{n} \sum_{i=1}^{n} u^i \quad \text{std}(u) = \left(\frac{1}{n} \sum_{i=1}^{n} (u^i - \bar{u})^2 \right)^{\frac{1}{2}}
\]

- the \(z \)-score or standardization of \(u \) is the embedding

\[
x = \text{zscore}(u) = \frac{1}{\text{std}(u)} (u - \bar{u})
\]

- ensures that embedding values are centered at zero, with standard deviation one
- \(z \)-scored features are very easy to interpret: \(x = \phi(u) = +1.3 \) means that \(u \) is 1.3 standard deviations above the mean value
Log transform

- old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as $\phi(u) = \log u$ (or $\log(1 + u)$ if u is sometimes zero), then standardize

- examples: web site visits, ad views, company capitalization

- interpretation as faithful embedding:
 - 20 and 22 are similar, as are 1000 and 1100
 - but 20 and 120 are not similar
 - *i.e.*, you care about fractional or relative differences between raw values

 (here, log embedding is faithful, affine embedding is not)

- can also apply to output or label field, *i.e.*, $y = \psi(v) = \log v$ if you care about percentage or fractional errors; recover $\hat{v} = \exp(\hat{y})$
Example: House price prediction

- we want to predict house selling price v from record $u = (u_1, u_2)$
 - $u_1 = \text{area (sq. ft.)}$
 - $u_2 = \# \text{ bedrooms}$

- we care about relative error in price, so we embed v as $\psi(v) = \log v$ (and then standardize)

- we standardize fields u_1 and u_2

$$x_1 = \frac{u_1 - \mu_1}{\sigma_1}, \quad x_2 = \frac{u_2 - \mu_2}{\sigma_2}$$

- $\mu_1 = \bar{u}_1$ is mean area
- $\mu_2 = \bar{u}_2$ is mean number of bedrooms
- $\sigma_1 = \text{std}(u_1)$ is std. dev. of area
- $\sigma_2 = \text{std}(u_2)$ is std. dev. of $\# \text{ bedrooms}$

(means and std. dev. are over our data set)
Example: House price linear regression predictor

- predict $y = \log v$ (log of price) from standardized area and # bedrooms
- linear predictor: $\hat{y} = \theta_1 + \theta_2 x_1 + \theta_3 x_2$
- in terms of original raw data:
 $$\hat{v} = \exp \left(\theta_1 + \theta_2 \frac{u_1 - \mu_1}{\sigma_1} + \theta_3 \frac{u_2 - \mu_2}{\sigma_2} \right)$$
- exp undoes log embedding of house price
- readily interpretable, e.g., what does $\theta_2 = 0.7$ mean?
Vector embeddings
Vector embeddings for real field

- we can embed a field u into a vector $x = \phi(u) \in \mathbb{R}^k$
- useful even when $\mathcal{U} = \mathbb{R}$ (real field)
- polynomial embedding:
 \[\phi(u) = (1, u, u^2, \ldots, u^d) \]
- piecewise linear embedding:
 \[\phi(u) = (1, (u)_-, (u)_+) \]
 where $(u)_- = \min(u, 0)$, $(u)_+ = \max(u, 0)$
- linear predictor with these features yield polynomial and piecewise linear predictors of raw features
Categorical data

- data field is *categorical* if it only takes a finite number of values

- *i.e.*, \mathcal{U} is a finite set $\{\alpha_1, \ldots, \alpha_k\}$; α_i are *category labels*

- we often use category labels $1, \ldots, k$, and refer to ‘category i’

- examples:
 - TRUE/FALSE (two values, also called Boolean)
 - APPLE, ORANGE, BANANA (three values)
 - MONDAY, ..., SUNDAY (seven values)
 - ZIP code (around 40000 values)
 - countries (around 185 values)
 - languages (several thousand spoken by large numbers of people)
One-hot embedding for categoricals

- $\mathcal{U} = \{1, \ldots, k\}$
- **one-hot embedding**: $\phi(i) = e_i \in \mathbb{R}^k$
- examples:
 - $\phi(\text{apple}) = (1, 0, 0)$, $\phi(\text{orange}) = (0, 1, 0)$, $\phi(\text{banana}) = (0, 0, 1)$
 - $\phi(\text{true}) = (1, 0)$, $\phi(\text{false}) = (0, 1)$ (another embedding of Boolean, into \mathbb{R}^2)
 - $\phi(\text{Mandarin}) = e_1$, $\phi(\text{English}) = e_2$, $\phi(\text{Hindi}) = e_3$, \ldots, $\phi(\text{Azeri}) = e_{55}$, \ldots
- standardizing these features handles *unbalanced* data
Reduced one-hot embedding for categoricals

- $\mathcal{U} = \{1, \ldots, k\}$
- one-hot embedding maps \mathcal{U} to \mathbb{R}^k; reduced one-hot embedding maps \mathcal{U} to \mathbb{R}^{k-1}
- choose one value, say $i = k$, as the default or nominal value
- $\phi(k) = 0 \in \mathbb{R}^{k-1}$, i.e., map the default value to (vector) 0
- $\phi(i) = e_i \in \mathbb{R}^{k-1}$, $i = 1, \ldots, k - 1$
- example: $\mathcal{U} = \{\text{True}, \text{False}\}$ with False as default

$$\phi(\text{True}) = 1, \quad \phi(\text{False}) = 0$$

(a common embedding of Booleans into \mathbb{R})
Ordinal data

- ordinal data is categorical, with an order
- example: *Likert scale*, with values

 STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- can embed into \mathbb{R} with values $-2, -1, 0, 1, 2$
- or treat as categorical, with one-hot embedding into \mathbb{R}^5
- example: number of bedrooms in house

 - can be treated as a real number
 - or as an ordinal with (say) values $1, \ldots, 6$
Feature engineering
Feature engineering

- basic idea:
 - start with some features
 - then process or transform them to produce new (‘engineered’) features
 - use these new features in your predictor

- was it a good idea? did it improve your predictor?
 - train your model with original features and validate performance
 - train your model with new features and validate performance
 - if performance with new features is better, your feature engineering was successful
Types of feature transforms

- **modify individual features:** replace original feature \(x_i \) with modified or transformed feature \(x_i^{\text{new}} \)
 - simple example: standardize, \(x_i^{\text{new}} = (x_i - \mu_i)/\sigma_i \)

- **create multiple features from each original feature**
 - simple example: powers, replace \(x_i \) with \((x_i, x_i^2, \ldots, x_i^q) \)

- **create new features from multiple original features**
 - simple example: product, \(x_i^{\text{new}} = x_k x_l \)
Gamma-transform

\[x_{\text{new}}^i = \text{sign}(x_i) |x_i|^\gamma_i, \quad \gamma_i > 0 \]
Clipping

- **winsorize** or **clip** or **saturate** with lower and upper clip levels l_i, u_i

$$x_i^{new} = \begin{cases}
 u_i & x_i > u_i \\
 x_i & l_i \leq x_i \leq u_i \\
 l_i & x_i < l_i
\end{cases}$$
replace x_i with $(x_i, x_i^2, \ldots, x_i^q)$
Split into positive and negative parts

- replace x_i with $((x_i)_+, (x_i)_-)$
- or, split into negative, middle, and high values: replace x_i with

 $$((x_i + 1)_-, \text{sat}(x_i), (x_i - 1)_+)$$

 \[\text{sat}(a) = \min(1, \max(x, -1))\] is the **saturation function**
Creating new features from multiple original features

- can be used to model *interactions* among features
- examples: for $i < j$
 - maximum: $\max(x_i, x_j)$
 - product: $x_i x_j$
- example: all monomials up to degree 3 of (x_1, x_2):
 $$(x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1 x_2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$$
 linear model with these features gives arbitrary degree 3 polynomial of (x_1, x_2)
Interpreting products of features as interactions

- Suppose x_i are Boolean, with values 0, 1, for $i = 1, \ldots, d$, e.g., representing patient symptoms.

- Create new 'interaction' features $x_i x_j$, for $i < j$, of which there are $d(d - 1)/2$.

- Linear regression model (for $d = 3$) is

$$\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_{12} x_1 x_2 + \theta_{13} x_1 x_3 + \theta_{23} x_2 x_3$$

- θ_1 is the amount our prediction goes up when $x_1 = 1$.

- θ_3 is the amount our prediction goes up when $x_3 = 1$.

- θ_{13} is the amount our prediction goes up when x_1 and x_3 are both 1 (in addition to $\theta_1 + \theta_3$).

- E.g., with θ_{13} large, the simultaneous presence of symptoms 1 and 3 makes our estimate go up a lot.
Quantizing

- specify *bin boundaries* \(b_1 < b_2 < \cdots < b_k \)
- partitions into *bins* or *buckets* \((-\infty, b_1], (b_1, b_2], \ldots (b_{k-1}, b_k], (b_k, \infty)\)
- common choice of bin boundaries: quantiles of \(x_i \), e.g., deciles
- replace \(x_i \) with

\[
\begin{align*}
 e_1 & \quad x_i \leq b_1 \\
 e_2 & \quad b_1 < x_i \leq b_2 \\
 \vdots & \quad \vdots \\
 e_k & \quad b_{k-1} < x_i \leq b_k \\
 e_{k+1} & \quad b_k < x_i
\end{align*}
\]

i.e., \(x_i \) maps to \(e_l \), if \(x_i \) is in bin \(l \)
Feature engineering pipeline

- feature transformations can be done multiple times
- start by embedding original record \(u \) into vector feature \(x^0 \in \mathbb{R}^{d_0} \) using \(\tilde{\phi} \), \(x^0 = \tilde{\phi}(u) \)
- superscript 0 in \(x^0 \) and \(d_0 \) means starting point for feature engineering
- transform \(x^0 \) using a feature engineering transform \(T^1 \), to get \(x^1 = T^1(x^0) \in \mathbb{R}^{d_1} \)
- superscript 1 in \(x^1 \) and \(d_1 \) means ‘first step’ of feature engineering
- repeat \(M \) times to get final embedding \(x = x^M = \varphi^M(x^{M-1}) \)
- final feature map is a composition:
 \[
 \phi = T^M \circ T^{M-1} \circ \cdots \circ T^1 \circ \tilde{\phi}
 \]
- called feature engineering pipeline
Automatic feature generation
Hand crafted versus automatic features

- features and feature engineering described above generally done by hand, using experience
- can also develop feature mappings automatically, directly from some data
- examples: word2vec, vgg16 were developed automatically (from very large data sets)
- we’ll later see some of these methods (PCA, neural nets, …)
Summary
Summary

- raw features are mapped to vectors for subsequent processing
- feature maps can range from simple to complex
- use validation to choose among different candidate feature maps
- sometimes the original feature map is followed by subsequent transformations, called feature engineering
- we'll see later how feature mappings can be derived from data, as opposed to by hand