Features

Sanjay Lall and Stephen Boyd

EE104
Stanford University
Records and embedding
Raw data

- **raw data** pairs are \((u, v)\), with \(u \in \mathcal{U}, v \in \mathcal{V}\)
- \(\mathcal{U}\) is set of all possible input values
- \(\mathcal{V}\) is set of all possible output values
- each \(u\) is called a **record**
- typically a record is a tuple, or list, \(u = (u_1, u_2, \ldots, u_r)\)
- each \(u_i\) is a **field** or **component**, which has a **type**, e.g., real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- e.g., a record for a house for sale might consist of
 - (address, photo, description, house/apartment?, lot size, \ldots, \# bedrooms)
Feature map

- Learning algorithms are applied to \((x, y)\) pairs,
 \[x = \phi(u), \quad y = \psi(v) \]

- \(\phi : \mathcal{U} \rightarrow \mathbb{R}^d\) is the feature map for \(u\)

- \(\psi : \mathcal{V} \rightarrow \mathbb{R}\) is the feature map for \(v\)

- Feature maps transform records into vectors

- Feature maps usually work on each field separately,
 \[\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r)) \]

- \(\phi_i\) is an embedding of the type of field \(i\) into a vector
Embeddings

- embedding puts the different field types on an equal footing, i.e., vectors
- some embeddings are simple, e.g.,
 - for a number field ($\mathcal{U} = \mathbb{R}$), $\phi_i(u_i) = u_i$
 - for a Boolean field, $\phi_i(u_i) = \begin{cases} 1 & u_i = \text{TRUE} \\ -1 & u_i = \text{FALSE} \end{cases}$
- others are more sophisticated
 - text to TFID histogram
 - word2vec (maps words into vectors)
 - pre-trained ImageNet NN (maps images into vectors)

(more on these later)
More embeddings

- color to \((R, G, B)\)

- geolocation data: \(\phi(u) = (\text{Lat}, \text{Long})\) in \(\mathbb{R}^2\) or embed in \(\mathbb{R}^3\) (if data points are spread over planet)

- day of week:
Faithful embeddings

A faithful embedding satisfies

- $\phi(u)$ is near $\phi(\tilde{u})$ when u and \tilde{u} are ‘similar’
- $\phi(u)$ is not near $\phi(\tilde{u})$ when u and \tilde{u} are ‘dissimilar’

The left-hand concept is vector distance; the right-hand concept depends on field type, application.

- Interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies
- We will see later how such embeddings can be constructed
Standardized embeddings

usually assume that an embedding is *standardized*

- entries of $\phi(u)$ are centered around 0
- entries of $\phi(u)$ have RMS value around 1
- roughly speaking, entries of $\phi(u)$ ranges over ± 1

- with standarized embeddings, entries of feature map

$$\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r))$$

are all comparable, i.e., centered around zero, standard deviation around one

- $\text{rms}(\phi(u) - \phi(\tilde{u}))$ is reasonable measure of how close records u and \tilde{u} are
Standardization or z-scoring

- suppose $\mathcal{U} = \mathbb{R}$ (field type is real numbers)

- for data set $u^1, \ldots, u^n \in \mathbb{R}$

 $$\bar{u} = \frac{1}{n} \sum_{i=1}^{n} u^i \quad \text{std}(u) = \left(\frac{1}{n} \sum_{i=1}^{n} (u^i - \bar{u})^2 \right)$$

- the z-score or standardization of u is the embedding

 $$x = \text{zscore}(u) = \frac{1}{\text{std}(u)} (u - \bar{u})$$

- ensures that embedding values are centered at zero, with standard deviation one

- z-scored features are very easy to interpret: $x = \phi(u) = +1.3$ means that u is 1.3 standard deviations above the mean value
Log transform

- old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as $\phi(u) = \log u$ (or $\log(1 + u)$) (and then standarize)

- examples: web site visits, ad views, company capitalization

- interpretation as faithful embedding:
 - 20 and 22 are similar, as are 1000 and 1100
 - but 20 and 120 are not similar
 - i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

- can also apply to output or label field, i.e., $y = \psi(v) = \log v$ if you care about percentage or fractional errors; recover $\hat{v} = \exp(\hat{y})$
Example: house price prediction

- we want to predict house selling price \(v \) from record \(u = (u_1, u_2) \)
 - \(u_1 = \text{area (sq. ft.)} \)
 - \(u_2 = \# \text{ bedrooms} \)

- we care about relative error in price, so we embed \(v \) as \(\psi(v) = \log v \) (and then standardize)

- we standardize fields \(u_1 \) and \(u_2 \)

 \[
 x_1 = \frac{u_1 - \mu_1}{\sigma_1}, \quad x_2 = \frac{u_2 - \mu_2}{\sigma_2}
 \]

 - \(\mu_1 = \bar{u}_1 \) is mean area
 - \(\mu_2 = \bar{u}_2 \) is mean number of bedrooms
 - \(\sigma_1 = \text{std}(u_1) \) is std. dev. of area
 - \(\sigma_2 = \text{std}(u_2) \) is std. dec. of \# bedrooms

(means and std. dev. are over our data set)
Example: house price regression model

- regression model: $\hat{y} = \theta_1 + \theta_2 x_1 + \theta_2 x_2$

- in terms of original raw data:
 $$\hat{v} = \exp\left(\theta_1 + \theta_2 \frac{u_1 - \mu_1}{\sigma_1} + \theta_3 \frac{u_2 - \bar{u}_2}{\sigma_2}\right)$$

- exp undoes log embedding of house price
Vector embeddings
Vector embeddings for real field

- we can embed a field u into a vector $x = \phi(u) \in \mathbb{R}^k$
- useful even when $\mathcal{U} = \mathbb{R}$ (real field)
- polynomial embedding:
 $$\phi(u) = (1, u, u^2, \ldots, u^d)$$
- piecewise linear embedding:
 $$\phi(u) = (1, (u\text{)}_-, (u\text{)}_+)$$
 where $(u\text{)}_- = \min(u, 0)$, $(u\text{)}_+ = \max(u, 0)$
- regression with these features yield polynomial and piecewise linear predictors
Categorical data

- data field is *categorical* if it only takes a finite number of values
- *i.e.*, \(\mathcal{U} \) is a finite set \(\{u_1, \ldots, u_k\} \)
- examples:
 - TRUE/FALSE (two values, also called Boolean)
 - APPLE, ORANGE, BANANA (three values)
 - MONDAY, ..., SUNDAY (seven values)
 - ZIP code (40000 values)
- **one-hot embedding for categoricals**: \(\phi(u_i) = e_i \in \mathbb{R}^k \)
 \[
 \phi(\text{APPLE}) = (1, 0, 0), \quad \phi(\text{ORANGE}) = (0, 1, 0), \quad \phi(\text{BANANA}) = (0, 0, 1)
 \]
- standardizing these features handles *unbalanced* data
Ordinal data

- Ordinal data is categorical, with an order

- Example: Likert scale, with values

 \[\text{strongly disagree, disagree, neutral, agree, strongly agree}\]

- Can embed into \(\mathbb{R}\) with values \(-2, -1, 0, 1, 2\)

- Or treat as categorical, with one-hot embedding into \(\mathbb{R}^5\)

- Example: Number of bedrooms in house can be treated as a number, or an ordinal with (say) values 1, \ldots, 6
Feature engineering
How feature maps are constructed

- start by embedding each field

\[\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r)) \]

- can then standardize, if needed

- use *feature engineering* to create new features from existing ones
Creating new features

- product features: $x_{\text{new}} = x_i x_j$ (models *interactions* between features)
- max features: $x_{\text{new}} = \max(x_i, x_j)$ (can also use min)
- random features:
 - choose random matrix R
 - new features are $(Rx)_+$ or $(Rx)_-$
Un-embedding
Un-embedding

- we embed v as $y = \psi(v)$, $\psi: \mathcal{V} \to \mathbb{R}$
- we need to ‘invert’ this operation, and go from \hat{y} to \hat{v}
- when the inverse function exists, we use $\psi^{-1}: \mathbb{R} \to \mathcal{V}$
- example: log embedding $y = \log v$ has inverse $v = \exp y$
- prediction stack:
 1. embed: given record u, feature vector is $x = \phi(u)$
 2. predict: $\hat{y} = g(x)$
 3. un-embed: $\hat{v} = \psi^{-1}(\hat{y})$
- final predictor is $\hat{v} = \psi^{-1}(g(\phi(u)))$
Un-embedding

- In many cases, the inverse of \(\psi \) function doesn’t exist
- For example, embedding a Boolean or ordinal into \(\mathbb{R} \)
- For the purposes of un-embedding, we define

\[
\psi^{-1}(y) = \arg\min_{v \in \mathcal{V}} \| y - \psi(v) \|
\]

i.e., we choose the value of \(v \) for which \(\psi(v) \) is closest to \(y \)
- Example: embed \textsc{true} \(\mapsto 1 \) and \textsc{false} \(\mapsto -1 \)
- Un-embed via

\[
\psi^{-1}(y) = \begin{cases}
\text{true} & \text{if } y > 0 \\
\text{false} & \text{otherwise}
\end{cases}
\]
Example: Un-embedding one-hot

- **one-hot embedding**: \(\phi(u) = e_u \) for \(U = \{1, \ldots, d\} \)

- un-embed

\[
\phi^{-1}(x) = \arg\min_u ||x - e_u||_2 = \arg\max_u x_u
\]