Records and embedding
Raw data

- **raw data** pairs are \((u, v)\), with \(u \in \mathcal{U}, v \in \mathcal{V}\)
- \(\mathcal{U}\) is set of all possible input values
- \(\mathcal{V}\) is set of all possible output values
- each \(u\) is called a *record*
- typically a record is a tuple, or list, \(u = (u_1, u_2, \ldots, u_r)\)
- each \(u_i\) is a *field* or *component*, which has a *type*, e.g., real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- *e.g.*, a record for a house for sale might consist of

 (address, photo, description, house/apartment?, lot size, ... , # bedrooms)
Feature map

- learning algorithms are applied to \((x, y)\) pairs,

\[
x = \phi(u), \quad y = \psi(v)
\]

- \(\phi: \mathcal{U} \rightarrow \mathbb{R}^d\) is the feature map for \(u\)

- \(\psi: \mathcal{V} \rightarrow \mathbb{R}\) is the feature map for \(v\)

- feature maps transform records into vectors

- feature maps usually work on each field separately,

\[
\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r))
\]

- \(\phi_i\) is an embedding of the type of field \(i\) into a vector
Embeddings

- embedding puts the different field types on an equal footing, \(i.e. \), vectors

- some embeddings are simple, \(e.g. \),
 - for a number field \((\mathcal{U} = \mathbb{R})\), \(\phi_i(u_i) = u_i \)
 - for a Boolean field, \(\phi_i(u_i) = \begin{cases} 1 & u_i = \text{TRUE} \\ -1 & u_i = \text{FALSE} \end{cases} \)

- others are more sophisticated
 - text to TFID histogram
 - word2vec (maps words into vectors)
 - pre-trained ImageNet NN (maps images into vectors)

(more on these later)
More embeddings

- color to (R, G, B)
- geolocation data: $\phi(u) = (\text{Lat}, \text{Long})$ in \mathbb{R}^2 or embed in \mathbb{R}^3 (if data points are spread over planet)
- day of week:

![Day of week diagram]
Faithful embeddings

A **faithful** embedding satisfies

- $\phi(u)$ is near $\phi(\tilde{u})$ when u and \tilde{u} are ‘similar’
- $\phi(u)$ is not near $\phi(\tilde{u})$ when u and \tilde{u} are ‘dissimilar’

- lefthand concept is *vector distance*
- righthand concept depends on field type, application

- interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies
- we will see later how such embeddings can be constructed
Standardized embeddings

usually assume that an embedding is *standardized*

- entries of $\phi(u)$ are centered around 0
- entries of $\phi(u)$ have RMS value around 1
- roughly speaking, entries of $\phi(u)$ ranges over ± 1

- with standarized embeddings, entries of feature map

\[
\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r))
\]

are all comparable, *i.e.*, centered around zero, standard deviation around one

- rms($\phi(u) - \phi(\tilde{u})$) is reasonable measure of how close records u and \tilde{u} are
Standardization or z-scoring

- suppose $\mathcal{U} = \mathbb{R}$ (field type is real numbers)

- for data set $u^1, \ldots, u^n \in \mathbb{R}$

$$
\bar{u} = \frac{1}{n} \sum_{i=1}^{n} u^i \quad \text{std}(u) = \left(\frac{1}{n} \sum_{i=1}^{n} (u^i - \bar{u})^2 \right)^{\frac{1}{2}}
$$

- the z-score or standardization of u is the embedding

$$
x = \text{zscore}(u) = \frac{1}{\text{std}(u)} (u - \bar{u})
$$

- ensures that embedding values are centered at zero, with standard deviation one

- z-scored features are very easy to interpret: $x = \phi(u) = +1.3$ means that u is 1.3 standard deviations above the mean value
suppose all \(d \) (real) features have been standardized

- columns of \(n \times d \) feature matrix \(X \) have zero mean, RMS value one

\[
\frac{1}{n} X^T X = \Sigma
\]

\(\Sigma_{ii} = 1 \) (since each column of \(X \) has RMS value 1, and so norm \(\sqrt{n} \))

\(\Sigma_{ij} \) is *correlation coefficient* of \(i \)th and \(j \)th raw features
Log transform

- old school rule-of-thumb: if field \(u \) is positive and ranges over wide scale, embed as \(\phi(u) = \log u \) (or \(\log(1 + u) \)) (and then standarize)

- examples: web site visits, ad views, company capitalization

- interpretation as faithful embedding:
 - 20 and 22 are similar, as are 1000 and 1100
 - but 20 and 120 are not similar
 - \(i.e. \), you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

- can also apply to output or label field, \(i.e. \), \(y = \psi(v) = \log v \) if you care about percentage or fractional errors; recover \(\hat{v} = \exp(\hat{y}) \)
Example: House price prediction

- we want to predict house selling price \(\nu \) from record \(\nu = (\nu_1, \nu_2) \)
 - \(\nu_1 = \text{area (sq. ft.)} \)
 - \(\nu_2 = \# \text{ bedrooms} \)

- we care about relative error in price, so we embed \(\nu \) as \(\psi(\nu) = \log \nu \) (and then standardize)

- we standardize fields \(\nu_1 \) and \(\nu_2 \)

\[
x_1 = \frac{\nu_1 - \mu_1}{\sigma_1}, \quad x_2 = \frac{\nu_2 - \mu_2}{\sigma_2}
\]

- \(\mu_1 = \bar{\nu}_1 \) is mean area
- \(\mu_2 = \bar{\nu}_2 \) is mean number of bedrooms
- \(\sigma_1 = \text{std}(\nu_1) \) is std. dev. of area
- \(\sigma_2 = \text{std}(\nu_2) \) is std. dec. of \# bedrooms

(means and std. dev. are over our data set)
Example: House price regression model

- regression model: \(\hat{y} = \theta_1 + \theta_2 x_1 + \theta_3 x_2 \)

- in terms of original raw data:
 \[
 \hat{v} = \exp \left(\theta_1 + \theta_2 \frac{u_1 - \mu_1}{\sigma_1} + \theta_3 \frac{u_2 - \mu_2}{\sigma_2} \right)
 \]

- \(\exp \) undoes log embedding of house price
Vector embeddings
Vector embeddings for real field

- we can embed a field u into a vector $x = \phi(u) \in \mathbb{R}^k$

- useful even when $\mathcal{U} = \mathbb{R}$ (real field)

- polynomial embedding:

 $\phi(u) = (1, u, u^2, \ldots, u^d)$

- piecewise linear embedding:

 $\phi(u) = (1, (u)_-, (u)_+)$

 where $(u)_- = \min(u, 0)$, $(u)_+ = \max(u, 0)$

- regression with these features yield polynomial and piecewise linear predictors
Whitening

- analog of standardization for raw data $\mathcal{U} = \mathbb{R}^d$
- start with raw data, $n \times d$ matrix U
- $\bar{u} = U^T 1 / n$ is vector of column means
- $\tilde{U} = U - 1 \bar{u}^T$ is de-meaned data matrix
- $\tilde{U} = QR$ is its QR factorization
- $X = \sqrt{n}Q = \sqrt{n}\tilde{U}R^{-1}$ defines embedding $x^i = \phi(u^i)$
 - columns of X have zero mean and RMS value one
 - columns of X are orthogonal
 - features are uncorrelated
 - feature correlation matrix is $\Sigma = I$
Categorical data

- data field is *categorical* if it only takes a finite number of values
- *i.e.*, \(\mathcal{U} \) is a finite set \(\{\alpha_1, \ldots, \alpha_k\} \)
- examples:
 - TRUE/FALSE (two values, also called Boolean)
 - APPLE, ORANGE, BANANA (three values)
 - MONDAY, . . . , SUNDAY (seven values)
 - ZIP code (40000 values)
- one-hot embedding for categoricals: \(\phi(\alpha_i) = e_i \in \mathbb{R}^k \)

 \[
 \begin{align*}
 \phi(\text{APPLE}) &= (1, 0, 0), & \phi(\text{ORANGE}) &= (0, 1, 0), & \phi(\text{BANANA}) &= (0, 0, 1)
 \end{align*}

- standardizing these features handles *unbalanced* data
Ordinal data

- ordinal data is categorical, with an order
- example: *Likert scale*, with values

 STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- can embed into \mathbb{R} with values $-2, -1, 0, 1, 2$
- or treat as categorical, with one-hot embedding into \mathbb{R}^5
- example: number of bedrooms in house
 - can be treated as a real number
 - or as an ordinal with (say) values $1, \ldots, 6$
Feature engineering
How feature maps are constructed

- start by embedding each field

\[\phi(u_1, \ldots, u_r) = (\phi_1(u_1), \ldots, \phi_r(u_r)) \]

- can then standardize, if needed

- use *feature engineering* to create new features from existing ones
Creating new features

- product features: $x_{\text{new}} = x_i x_j$ (models \textit{interactions} between features)
- max features: $x_{\text{new}} = \max(x_i, x_j)$ (can also use min)
- positive/negative parts:
 $$x_{\text{new}+} = (x_i)_+ = \max(x_i, 0), \quad x_{\text{new}−} = (x_i)_− = \min(x_i, 0)$$
- random features:
 - choose random matrix R
 - new features are $(Rx)_+$ or $(Rx)_−$
Un-embedding
Un-embedding

- we embed v as $y = \psi(v), \psi : \mathcal{V} \rightarrow \mathbb{R}$
- we need to ‘invert’ this operation, and go from \hat{y} to \hat{v}
- when the inverse function exists, we use $\psi^{-1} : \mathbb{R} \rightarrow \mathcal{V}$
- example: log embedding $y = \log v$ has inverse $v = \exp y$
- prediction stack:
 1. embed: given record u, feature vector is $x = \phi(u)$
 2. predict: $\hat{y} = g(x)$
 3. un-embed: $\hat{v} = \psi^{-1}(\hat{y})$
- final predictor is $\hat{v} = \psi^{-1}(g(\phi(u)))$
Un-embedding

- in many cases, the inverse of ψ function doesn’t exist
- for example, embedding a Boolean or ordinal into \mathbb{R}
- for the purposes of un-embedding, we define

$$
\psi^{-1}(y) = \arg\min_{v \in \mathcal{V}} \|y - \psi(v)\|
$$

i.e., we choose the value of v for which $\psi(v)$ is closest to y
- example: embed $\text{TRUE} \mapsto 1$ and $\text{FALSE} \mapsto -1$
- un-embed via

$$
\psi^{-1}(y) = \begin{cases}
\text{TRUE} & \text{if } y > 0 \\
\text{FALSE} & \text{otherwise}
\end{cases}
$$
Example: Un-embedding one-hot

- **one-hot embedding**: \(\phi(u) = e_u \) for \(U = \{1, \ldots, d\} \)

- **un-embed**

 \[
 \phi^{-1}(x) = \arg\min_u ||x - e_u||_2 = \arg\max_u x_u
 \]