
EE104 S. Lall and S. Boyd

Fitting Classifiers by Empirical Risk Minimization

Sanjay Lall and Stephen Boyd

EE104
Stanford University

1

Embedding and un-embedding a categorical

2

Embedding the categorical output v

I we embed raw output v 2 V into Rm as y = (v) 2 Rm

I we can describe by the K vectors 1 = (v1); : : : ; K = (vK)

(i.e., just say what vector in Rm each v 2 V maps to)

I we call the vector i the representative of vi

I we call the set f 1; : : : ; Kg the constellation

I examples:

I true 7! 1, false 7! �1

I true 7! 1, false 7! 0

I yes 7! 1, maybe 7! 0 no 7! �1

I yes 7! (1; 0), maybe 7! (0; 0), no 7! (0; 1)

I apple 7! (1; 0; 0), orange 7! (0; 1; 0), banana 7! (0; 0; 1)

I (Horse 3, Horse 1, Horse 2) 7! (3; 1; 2)

I word2vec (maps 1M words to vectors in R300)

3

One-hot and reduced one-hot embedding

I one-hot embedding of K classes into RK : (vi) = i = ei

I e.g., for Booleans: 1 = (1; 0), 2 = (0; 1)

I reduced one-hot embedding into RK�1:

I choose one of the classes as the default, and map it to 0 2 RK�1

I map the others to the unit vectors e1; : : : ; eK�1 2 RK�1

I for Booleans:

I one-hot embedding is 1 = (1; 0), 2 = (0; 1)

I reduced one-hot embedding is 1 = 0, 2 = 1

I example: V = fmaybe;yes;nog, with default maybe

I reduced one-hot embedding is (maybe) = (0; 0), (yes) = (1; 0), (no) = (0; 1)

4

Classifying by un-embedding a prediction

I embed raw input to feature vector as x = �(u) 2 Rd

I embed raw output to representative as y = (v) 2 Rm

I create predictor g : Rd ! Rm with ŷ = g(x)

I we hope that ŷ = g(x) � y = (v) (ŷ and y are vectors, so this means kŷ � yk2 small)

I to get the prediction, we un-embed ŷ to get v̂: v̂ = y(ŷ)

I y : Rm ! V is the un-embedding function

I the final classifier has the form v̂ = G(u) = y(g(�(u)))

I can write as G = y � g � �

I in words: embed; predict; un-embed

5

Nearest neighbor un-embedding

I given prediction ŷ 2 Rm, we un-embed to get v̂

I we denote our un-emdedding using the symbol y : Rm ! V

I we will use nearest neighbor un-embedding:

 y(ŷ) = argmin
v2V

kŷ � (v)k2

(we can break ties any way we like)

I i.e., we choose the raw value associated with the nearest representative to ŷ

6

Un-embedding Boolean

I embed true 7! 1 = 1 and false 7! �1 = 2

I un-embed via

 y(ŷ) =

(
true ŷ � 0

false ŷ < 0

3 2 1 0 1 2 3

truefalse

7

Un-embedding one-hot

I take V = f1; : : : ;Kg

I one-hot embedding: i = ei, i = 1; : : : ;K

I un-embed via y(ŷ) = argmini ky � eik2

I can be expressed as y(ŷ) = argmaxi ŷi

I i.e., we guess class associated with the largest entry in ŷ

I reason:

I kŷ � eik
2

2
= kŷk2

2
+ 1� 2ŷTei = kŷk

2

2
+ 1� 2ŷi

I first two terms don’t depend on i, so we just choose i to maximize ŷi

8

Un-embedding yes, maybe, no

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

yesmaybe

no

ŷ1

ŷ2

I embed yes 7! (1; 0), maybe 7! (0; 0), no 7! (0; 1) (reduced one-hot)

I un-embed via

 y(ŷ) =

8><
>:

yes ŷ1 > 1=2; ŷ1 > ŷ2

maybe ŷ1 < 1=2; ŷ2 < 1=2

no ŷ2 > 1=2; ŷ1 < ŷ2

(can choose any value on boundaries)

9

Voronoi diagram

1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.2

1.4

1.6

1.8

2.0

I y partitions Rm into the K regions fy j y(y) = vig, for i = 1; : : : ;K

I regions are polyhedra (of points closer to one representative than all others)

I called Voronoi diagram

I boundaries between regions are perpendicular bisectors between pairs of representatives i; j

10

Loss function and empirical risk

11

Parametrized predictor

I we use parametrized predictor g� : Rd ! Rm

I � is a parameter that we can choose

I predictor g� gives classifier v̂ = G(u) = y(g�((u)))

I we’ll choose � using ERM and a training data set

I we validate the predictor by performance metric on a test data set

12

Examples of parametrized predictors for classification

I tree-based predictor (called a classification tree)

I � encodes tree, feature to split at each node, threshold, leaf values

I each leaf has a value of ŷ

I neural network

I � gives offset and weights in the different layers

I ŷ is output of last layer

I linear predictor

I � is a d�m parameter matrix

I ŷ = g�(x) = �Tx

13

Loss function for classifiers

I we use a loss function ` : Rm � V ! R

I `(ŷ; y) is how much prediction ŷ 2 Rm bothers us when observed value is y 2 f 1; : : : ; Kg

I the only possible values of y are 1; : : : ; K , so we can simply give the K functions of ŷ

`(ŷ; j); j = 1; : : : ;K

I `(ŷ; j) is how much we dislike predicting ŷ when y = j

I typically `(ŷ; j) is nonnegative, and small when ŷ � j

I square loss: `(ŷ; j) = kŷ � jk
2

2

I we’ll see far better loss functions for classifiers later

14

Square loss for Boolean classification

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

ŷ

`(ŷ;�1)

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

ŷ

`(ŷ; 1)

15

ERM and RERM

I we are given a training data set x1; : : : ; xn, y1; : : : ; yn, and a parametrized predictor g�

I empirical risk associated with loss function ` is

L(�) =
1

n

nX
i=1

`(ŷi; yi) =
1

n

nX
i=1

`(g�(x
i); yi)

I ERM: choose � to minimize L(�)

I in most cases, we need to resort to numerical optimization to find �

I regularized ERM: choose � to minimize L(�) + �r(�)

I r is the regularizer and � > 0 is the regularization hyper-parameter

16

Least squares classifier

I linear predictor ŷ = �Tx

I square loss `(ŷ; j) = kŷ � jk
2

2

I square regularizer r(�) = k�k2F

I called least squares classifier

I can solve RERM problem exactly using least squares

I we’ll see better losses for classifiers later

17

Example

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

u1

u2

I u 2 R2, embedded as x = (1; u1; u2); v 2 f�1; 1g, embedded as y = v

I square loss and regularizer
18

ERM for Neyman-Pearson metric

19

Neyman-Pearson meetric

I suppose we care about the Neyman-Pearson metric,
PK

j=1
�jEj

I Ej is rate of mistaking vj for some other class; � is a weight vector

I �j is how much we care about mistaking vj , relative to others

I to reflect different costs for different errors, we scale the losses by �i

I if ~̀(ŷ; j), j = 1; : : :K are the unweighted losses, we use

`(ŷ; j) = �j ~̀(ŷ; j); j = 1; : : : ;K

20

Example

I Boolean classifier, with 1 = �1, 2 = 1

I we care about Neyman-Pearson metric, �Efn + Efp

I � > 0 is how much we care about false negatives relative to false positive

I we use loss function

`(ŷ; y) =

(
(ŷ � y)2 if y = �1

�(ŷ � y)2 otherwise

which gives more weight to deviating from the positive representative 2

21

Example

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cfn=n

Cfp=n

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

I square loss, sum squares regularizer

I left hand plot shows training errors in blue, test errors in red

I right hand plot shows minimum-error classifier (i.e., � = 1)
22

Example

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

I left hand plot shows predictor when � = 0:4

I right hand plot shows predictor when � = 4

23

Summary

24

Summary

a classifier is a predictor, when the raw output is categorical v 2 V = fv1; : : : ; vKg

I called a Boolean classifier when jVj = K = 2, multi-class classifier when K > 2

I judged by various error rates, summarized in a confusion matrix, on test data

fitting a classifier to a training data set via ERM or RERM

I we embed the raw output v into Rm using , with i = (vi) the representative of class i

I we build a predictor for y, given x

I we un-embed a prediction ŷ 2 Rm to a class prediction v̂ = y(ŷ), using nearest neighbor

I there are special loss functions for fitting classifiers, that we’ll see later

25

