EE104 S. Lall and S. Boyd

Fitting Classifiers by Empirical Risk Minimization

Sanjay Lall and Stephen Boyd

EE104
Stanford University

Embedding and un-embedding a categorical

Embedding the categorical output v

» we embed raw output v € V into R™ as y = ¢(v) € R™

» we can describe ¢ by the K vectors 1 = ¥(v1),...,¥x = Y(vk)
(i.e., just say what vector in R™ each v € V maps to)

» we call the vector ; the representative of v;

» we call the set {91,...,¥x} the constellation

» examples:

» TRUE — 1, FALSE — —1

TRUE — 1, FALSE — 0

YES — 1, MAYBE — 0 NO — —1

YEs — (1,0), MAYBE — (0,0), No — (0,1)

APPLE +— (1,0,0), orRANGE +— (0,1,0), BANANA — (0,0,1)

(Horse 3, Horse 1, Horse 2) — (3,1, 2)

vVvyvyvVvyyyspy

word2vec (maps 1M words to vectors in R300)

One-hot and reduced one-hot embedding

» one-hot embedding of K classes into R¥: (v;) = ¢; = e;

» e.g., for Booleans: 41 = (1,0), ¥ = (0,1)

» reduced one-hot embedding into R¥~*:
» choose one of the classes as the default, and map it to 0 € REK-1
» map the others to the unit vectors e1,...,ex_1 € RE~1

» for Booleans:
» one-hot embedding is 41 = (1,0), ¥2 = (0,1)
» reduced one-hot embedding is 1 =0, 2 =1

» example: ¥V = {MAYBE, YES, NO}, with default MAYBE

» reduced one-hot embedding is ¥ (MAYBE) = (0, 0), ¥(YES) = (1,0), ¥(n0o) = (0,1)

Classifying by un-embedding a prediction

» embed raw input to feature vector as z = ¢(u) € R?

» embed raw output to representative as y = ¢(v) € R™

» create predictor g : R* — R™ with § = g(z)

» we hope that § = g(z) ® y = ¢(v) (¢ and y are vectors, so this means ||§ — y||2 small)
b to get the prediction, we un-embed § to get ©: ¥ = ¥1(%)

» ¥ : R™ — V is the un-embedding function

> the final classifier has the form o = G(u) = ¥ (g(¢(u)))

» canwriteas G =9logog

» in words: embed, predict, un-embed

Nearest neighbor un-embedding

» given prediction § € R™, we un-embed to get ¥
» we denote our un-emdedding using the symbol ' : R™ — V
» we will use nearest neighbor un-embedding:
3'(9) = argmin [|7 — $(v)||2
veEV
(we can break ties any way we like)

» i.e., we choose the raw value associated with the nearest representative to ¢

Un-embedding Boolean

» embed TRUE — 1 = %1 and FALSE — —1 = 9

» un-embed via

¢T(??) _ {TRUE >0

FALSE ¢ <0

-3 -2 -1 0 1

Un-embedding one-hot

» take V ={1,...,K}

» one-hot embedding: ¢¥; =e;,1=1,..., K

» un-embed via ¥1(§) = argmin; ||y — e;|»

b can be expressed as (§) = argmax; §;

» i.e., we guess class associated with the largest entry in §

» reason:

> g el =193 +1-29Tei = [1g)I3 +1 -2

» first two terms don’t depend on %, so we just choose i to maximize §;

Un-embedding yes, maybe, no

» embed YES — (1,0), MAYBE — (0,0), NO — (0,1) (reduced one-hot)
» un-embed via
YES 91> 1/2, 91> G2
¥1(9) = { MavBE 1 < 1/2, 2 < 1/2
NO g2 > 1/2, §1 < 92

(can choose any value on boundaries)

Voronoi diagram

20 . ° .
18 °

° L]

° [
16
14

L
12 °
L

10 . .

» ! partitions R™ into the K regions {y | ¥'(y) = v}, fori=1,..., K
» regions are polyhedra (of points closer to one representative than all others)
» called Voronoi diagram

» boundaries between regions are perpendicular bisectors between pairs of representatives ¥, ¥;

10

Loss function and empirical risk

11

Parametrized predictor

» we use parametrized predictor go : R* — R™
» 0 is a parameter that we can choose

> predictor ge gives classifier # = G(u) = ¥'(go(1(w)))

» we'll choose 8 using ERM and a training data set

» we validate the predictor by performance metric on a test data set

12

Examples of parametrized predictors for classification

> tree-based predictor (called a classification tree)

» & encodes tree, feature to split at each node, threshold, leaf values

» each leaf has a value of §

» neural network

» 0 gives offset and weights in the different layers

» 4 is output of last layer

» linear predictor

» 0 is a d X m parameter matrix

> §=go(z)=0"z

13

Loss function for classifiers

» we use a loss function £: R™ xV — R

» £(7,y) is how much prediction § € R™ bothers us when observed value is y € {¢1,...,¥x}

» the only possible values of y are 91, ...,9%xk, so we can simply give the K functions of §
09,v5), 7=1,...,K

» £(7,v;) is how much we dislike predicting § when y = 1;

» typically £(9, ;) is nonnegative, and small when § ~ v¢;

» square loss: £(g,%;) = 11§ — ;13

» we'll see far better loss functions for classifiers later

14

Square loss for Boolean classification

-4 -3 2 -

o

15

ERM and RERM

b we are given a training data set z',...,z™, y*,...,y™, and a parametrized predictor gs

» empirical risk associated with loss function £ is
L0 = L3 U5) = 1S tlan(e), o)
n i ’ n i ’

» ERM: choose 8 to minimize £(8)
» in most cases, we need to resort to numerical optimization to find 6
» regularized ERM: choose 8 to minimize £(8) + Ar(6)

» 7 is the regularizer and A > 0 is the regularization hyper-parameter

16

Least squares classifier

> linear predictor § = 8"z

» square loss £(§,%;) = 1§ — 53

» square regularizer 7(6) = ||0]|%

» called least squares classifier

» can solve RERM problem exactly using least squares

» we'll see better losses for classifiers later

17

Example

» u € R? embedded as z = (1,u1,us); v € {—1,1}, embedded as y = v

» square loss and regularizer

18

ERM for Neyman-Pearson metric

19

Neyman-Pearson meetric

» suppose we care about the Neyman-Pearson metric, Ele k; B;
» E; is rate of mistaking v; for some other class; k is a weight vector
» k; is how much we care about mistaking v;, relative to others

» to reflect different costs for different errors, we scale the losses by k;

» if £(§,%;), = 1,... K are the unweighted losses, we use

09, 9;) = k€9, %5), =1,...,K

20

Example

» Boolean classifier, with 91 = —1, 92 =1
» we care about Neyman-Pearson metric, K B + Efp
» k > 0 is how much we care about false negatives relative to false positive

» we use loss function
(9-vy)? fy=-1

L€g,y) =
@) k(9 —y)* otherwise

which gives more weight to deviating from the positive representative

21

Example

0.6
0.5
0.4

Chp/n o3

0.2

0.0

0.0 0.1 0.3 0.4 05

02
Cin/n
» square loss, sum squares regularizer

» left hand plot shows training errors in blue, test errors in red

» right hand plot shows minimum-error classifier (i.e., & = 1)

22

Example

» left hand plot shows predictor when k = 0.4

» right hand plot shows predictor when k = 4

23

Summary

24

Summary

a classifier is a predictor, when the raw output is categorical v € V = {v1,..., vk}

» called a Boolean classifier when |V| = K = 2, multi-class classifier when K > 2

» judged by various error rates, summarized in a confusion matrix, on test data

fitting a classifier to a training data set via ERM or RERM

» we embed the raw output v into R™ using 4, with 9; = 9(v;) the representative of class i
» we build a predictor for y, given z
» we un-embed a prediction § € R™ to a class prediction 9 = %1(§), using nearest neighbor

» there are special loss functions for fitting classifiers, that we'll see later

25

