Fitting Classifiers by Empirical Risk Minimization

Sanjay Lall and Stephen Boyd

EE104 Stanford University

Embedding and un-embedding a categorical

Embedding the categorical output v

- lacksim we embed raw output $v\in \mathcal{V}$ into ${\sf R}^m$ as $y=\psi(v)\in {\sf R}^m$
- we can describe ψ by the K vectors $\psi_1 = \psi(v_1), \ldots, \psi_K = \psi(v_K)$ (*i.e.*, just say what vector in \mathbb{R}^m each $v \in \mathcal{V}$ maps to)
- we call the vector ψ_i the *representative* of v_i
- we call the set $\{\psi_1, \ldots, \psi_K\}$ the *constellation*
- examples:
 - ▶ TRUE \mapsto 1, False \mapsto -1
 - ▶ TRUE \mapsto 1, FALSE \mapsto 0
 - ▶ Yes \mapsto 1, maybe \mapsto 0 no \mapsto -1
 - ▶ YES \mapsto (1,0), MAYBE \mapsto (0,0), NO \mapsto (0,1)
 - ▶ APPLE \mapsto (1,0,0), orange \mapsto (0,1,0), banana \mapsto (0,0,1)
 - (Horse 3, Horse 1, Horse 2) \mapsto (3, 1, 2)
 - ▶ word2vec (maps 1M words to vectors in **R**³⁰⁰)

One-hot and reduced one-hot embedding

- ▶ one-hot embedding of K classes into \mathbf{R}^{K} : $\psi(v_i) = \psi_i = e_i$
- e.g., for Booleans: $\psi_1 = (1, 0), \ \psi_2 = (0, 1)$
- reduced one-hot embedding into \mathbf{R}^{K-1} :

• choose one of the classes as the *default*, and map it to $0 \in \mathbf{R}^{K-1}$

- ▶ map the others to the unit vectors $e_1, \ldots, e_{K-1} \in \mathbf{R}^{K-1}$
- for Booleans:
 - one-hot embedding is $\psi_1 = (1, 0), \ \psi_2 = (0, 1)$
 - ▶ reduced one-hot embedding is $\psi_1 = 0$, $\psi_2 = 1$
- example: $\mathcal{V} = \{$ MAYBE, YES, NO $\}$, with default MAYBE
- ▶ reduced one-hot embedding is ψ (MAYBE) = (0,0), ψ (YES) = (1,0), ψ (NO) = (0,1)

Classifying by un-embedding a prediction

- \blacktriangleright embed raw input to feature vector as $x = \phi(u) \in \mathsf{R}^d$
- ▶ embed raw output to representative as $y = \psi(v) \in \mathbf{R}^m$
- create predictor $g: \mathsf{R}^d o \mathsf{R}^m$ with $\hat{y} = g(x)$
- ▶ we hope that $\hat{y} = g(x) \approx y = \psi(v)$ (\hat{y} and y are vectors, so this means $\|\hat{y} y\|_2$ small)
- ▶ to get the prediction, we *un-embed* \hat{y} to get \hat{v} : $\hat{v} = \psi^{\dagger}(\hat{y})$
- $\psi^{\dagger}: \mathbf{R}^{m} \rightarrow \mathcal{V}$ is the *un-embedding function*
- \blacktriangleright the final classifier has the form $\hat{v}=G(u)=\psi^{\dagger}(g(\phi(u)))$
- \blacktriangleright can write as $G=\psi^{\dagger}\circ g\circ \phi$
- ▶ in words: *embed*; *predict*; *un-embed*

- ▶ given prediction $\hat{y} \in \mathbf{R}^m$, we *un-embed* to get \hat{v}
- ightarrow we denote our un-emdedding using the symbol $\psi^{\dagger}: {f R}^m
 ightarrow {\cal V}$
- ▶ we will use *nearest neighbor un-embedding*:

$$\psi^\dagger(\hat{y}) = rgmin_{v\in\mathcal{V}} ||\hat{y}-\psi(v)||_2$$

(we can break ties any way we like)

 \blacktriangleright *i.e.*, we choose the raw value associated with the nearest representative to \hat{y}

Un-embedding Boolean

- ▶ embed TRUE \mapsto 1 = ψ_1 and FALSE \mapsto -1 = ψ_2
- un-embed via

$$\psi^{\dagger}(\hat{y}) = egin{cases} ext{TRUE} & \hat{y} \geq 0 \ ext{false} & \hat{y} < 0 \end{cases}$$

Un-embedding one-hot

- ▶ take $\mathcal{V} = \{1, \dots, K\}$
- ▶ one-hot embedding: $\psi_i = e_i, i = 1, ..., K$
- un-embed via $\psi^{\dagger}(\hat{y}) = \operatorname{argmin}_i ||y e_i||_2$
- \blacktriangleright can be expressed as $\psi^{\dagger}(\hat{y}) = \mathrm{argmax}_i \, \hat{y}_i$
- \blacktriangleright *i.e.*, we guess class associated with the largest entry in \hat{y}
- reason:
 - $||\hat{y} e_i||_2^2 = ||\hat{y}||_2^2 + 1 2\hat{y}^{\mathsf{T}}e_i = ||\hat{y}||_2^2 + 1 2\hat{y}_i ||\hat{y}||_2^2 +$
 - ▶ first two terms don't depend on i, so we just choose i to maximize \hat{y}_i

Un-embedding yes, maybe, no

▶ embed YES \mapsto (1,0), MAYBE \mapsto (0,0), NO \mapsto (0,1) (reduced one-hot)

un-embed via

$$\psi^{\dagger}(\hat{y}) = egin{cases} ext{YES} & \hat{y}_1 > 1/2, \; \hat{y}_1 > \hat{y}_2 \ ext{MAYBE} & \hat{y}_1 < 1/2, \; \hat{y}_2 < 1/2 \ ext{NO} & \hat{y}_2 > 1/2, \; \hat{y}_1 < \hat{y}_2 \end{cases}$$

(can choose any value on boundaries)

Voronoi diagram

- ψ^{\dagger} partitions R^{m} into the K regions $\{y \mid \psi^{\dagger}(y) = v_i\}$, for i = 1, ..., K
- regions are *polyhedra* (of points closer to one representative than all others)
- called Voronoi diagram
- **b** boundaries between regions are perpendicular bisectors between pairs of representatives ψ_i, ψ_j

Loss function and empirical risk

Parametrized predictor

- we use parametrized predictor $g_{\theta} : \mathbf{R}^d \to \mathbf{R}^m$
- θ is a parameter that we can choose
- predictor $g_{ heta}$ gives classifier $\hat{v} = G(u) = \psi^{\dagger}(g_{ heta}(\psi(u)))$

- we'll choose θ using ERM and a training data set
- > we validate the predictor by performance metric on a test data set

Examples of parametrized predictors for classification

- tree-based predictor (called a *classification tree*)
 - \blacktriangleright θ encodes tree, feature to split at each node, threshold, leaf values
 - $\blacktriangleright\,$ each leaf has a value of \hat{y}
- neural network
 - \triangleright θ gives offset and weights in the different layers
 - \blacktriangleright \hat{y} is output of last layer
- linear predictor
 - \blacktriangleright θ is a $d \times m$ parameter matrix
 - $\blacktriangleright \ \hat{y} = g_{\theta}(x) = \theta^{\top} x$

Loss function for classifiers

- \blacktriangleright we use a loss function $\ell: {\mathbf R}^m \times {\mathcal V} \to {\mathbf R}$
- ▶ $\ell(\hat{y}, y)$ is how much prediction $\hat{y} \in \mathbf{R}^m$ bothers us when observed value is $y \in \{\psi_1, \dots, \psi_K\}$
- \blacktriangleright the only possible values of y are ψ_1, \ldots, ψ_K , so we can simply give the K functions of \hat{y}

$$\ell(\hat{y},\psi_j), \quad j=1,\ldots,K$$

- ▶ $\ell(\hat{y}, \psi_j)$ is how much we dislike predicting \hat{y} when $y = \psi_j$
- \blacktriangleright typically $\ell(\hat{y},\psi_j)$ is nonnegative, and small when $\hat{y}pprox\psi_j$
- square loss: $\ell(\hat{y},\psi_j) = ||\hat{y}-\psi_j||_2^2$
- we'll see far better loss functions for classifiers later

Square loss for Boolean classification

ERM and RERM

 \blacktriangleright we are given a training data set $x^1, \ldots, x^n, y^1, \ldots, y^n$, and a parametrized predictor $g_{ heta}$

• empirical risk associated with loss function ℓ is

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n\ell(\hat{y}^i,y^i) = rac{1}{n}\sum_{i=1}^n\ell(g_ heta(x^i),y^i)$$

- **ERM**: choose θ to minimize $\mathcal{L}(\theta)$
- \blacktriangleright in most cases, we need to resort to numerical optimization to find θ
- ▶ regularized ERM: choose θ to minimize $\mathcal{L}(\theta) + \lambda r(\theta)$
- ▶ r is the regularizer and $\lambda > 0$ is the regularization hyper-parameter

- ▶ linear predictor $\hat{y} = \theta^{\top} x$
- \blacktriangleright square loss $\ell(\hat{y},\psi_j) = ||\hat{y} \psi_j||_2^2$
- square regularizer $r(\theta) = ||\theta||_F^2$
- called *least squares classifier*
- can solve RERM problem exactly using least squares
- ▶ we'll see better losses for classifiers later

▶ $u \in \mathsf{R}^2$, embedded as $x = (1, u_1, u_2)$; $v \in \{-1, 1\}$, embedded as y = v

▶ square loss and regularizer

ERM for Neyman-Pearson metric

Neyman-Pearson meetric

- ▶ suppose we care about the Neyman-Pearson metric, $\sum_{j=1}^{K} \kappa_j E_j$
- ▶ E_j is rate of mistaking v_j for some other class; κ is a weight vector
- \triangleright κ_j is how much we care about mistaking v_j , relative to others
- \blacktriangleright to reflect different costs for different errors, we scale the losses by κ_i

 \blacktriangleright if $\widetilde{\ell}(\hat{y},\psi_j),~j=1,\ldots K$ are the unweighted losses, we use

$$\ell(\hat{y},\psi_j)=\kappa_j ilde{\ell}(\hat{y},\psi_j), \quad j=1,\ldots,K$$

- Boolean classifier, with $\psi_1 = -1$, $\psi_2 = 1$
- we care about Neyman-Pearson metric, $\kappa E_{fn} + E_{fp}$
- ightarrow $\kappa > 0$ is how much we care about false negatives relative to false positive
- we use loss function

$$\ell(\hat{y},y) = egin{cases} (\hat{y}-y)^2 & ext{if } y = -1 \ \kappa(\hat{y}-y)^2 & ext{otherwise} \end{cases}$$

which gives more weight to deviating from the positive representative ψ_2

- square loss, sum squares regularizer
- ▶ left hand plot shows training errors in blue, test errors in red
- right hand plot shows minimum-error classifier (*i.e.*, $\kappa = 1$)

- \blacktriangleright left hand plot shows predictor when $\kappa=0.4$
- right hand plot shows predictor when $\kappa = 4$

Summary

Summary

a *classifier* is a predictor, when the raw output is categorical $v \in \mathcal{V} = \{v_1, \dots, v_K\}$

- ▶ called a *Boolean classifier* when $|\mathcal{V}| = K = 2$, *multi-class classifier* when K > 2
- judged by various error rates, summarized in a confusion matrix, on test data

fitting a classifier to a training data set via ERM or RERM

- we embed the raw output v into \mathbf{R}^m using ψ , with $\psi_i = \psi(v_i)$ the representative of class i
- we build a predictor for y, given x
- we un-embed a prediction $\hat{y} \in \mathbf{R}^m$ to a class prediction $\hat{v} = \psi^{\dagger}(\hat{y})$, using nearest neighbor
- ▶ there are special loss functions for fitting classifiers, that we'll see later