Empirical Risk Minimization in Julia
(EmpiricalRiskMinimization.jl)

Reese Pathak, Sanjay Lall

EE104
Stanford University
Basics
EmpiricalRiskMinimization.jl

- abbreviated ERM.jl (or just ERM)
- allows you to quickly develop standard machine learning models in Julia
- your job: specify a model via a supported loss and regularizer
- ERM’s job: use a solver to determine optimal model parameters
- replaces explicit calls to specialized codes (e.g., gradient descent, prox-gradient, etc.)
 - but, is often slower than specialized code
Loading `ERM.jl` in JuliaBox

navigate to JuliaBox, then click on the *Packages* button

![JuliaBox Packages](image)

click the *Yours* button under *Package Builder*

![Package Builder](image)

under *Unregistered Packages*, type in the link below and click `+`

https://github.com/reesepathak/EmpiricalRiskMinimization.jl.git
Usage notes

users with a local Julia installation can still access ERM.jl

Pkg.add("https://github.com/reesepathak/EmpiricalRiskMinimization.jl.git")
using EmpiricalRiskMinimization

all users should frequently update the package

Pkg.update()
using EmpiricalRiskMinimization

(ERM is currently in version 0.0.1, so fixes to bugs are constantly being pushed)
Ridge regression
Ridge regression in **ERM.jl**

code below generates a random data set

```julia
srand(100)
n, k = 5000, 10; d = k + 1;
U = randn(n, k); theta_true = randn(d);
v = [ones(n) U] * theta_true + randn(n)
```

the following Julia code uses ERM to train a ridge regression model

```julia
using EmpiricalRiskMinimization
include("regression_data.jl") # loads data

M = Model(U, v, embedall=true, verbose=false)
train(M, lambda=1e-3) # automatically splits data
status(M) # will display a summary of training step
```
Ridge regression in ERM.jl

a single run of the previous code

--
results for single train/test
 training loss: 0.149055202518492
 test loss: 0.16689449857352331
 training samples: 4000
 test samples: 1000
 columns in X: 11
--

notice that ERM.jl defaulted to a 80-20 train-test split, automatically appended the constant feature, and standardized the data.
Ridge regression in ERM.jl

ν versus $\hat{\nu}$ (RMS error ≈ 1.051)

- retrieve train, test losses with `trainloss(M)`, `testloss(M)`
- get optimal theta with `thetaopt(M)`
- predictions on test set with `predict_v_from_test(M)`
Structure of EmpiricalRiskMinimization.jl
The **Model type**

computations with ERM.jl require a Model

\[M = \text{Model}(U, V, \text{loss} = \text{SquareLoss}(), \text{reg} = \text{L1Reg}(), \text{embedall} = \text{true}, \text{verbose} = \text{false}) \]

specifying a Model

- pass in raw numerical data
- pick a loss function with the **loss** keyword (default: MSE)
- pick a regularizer with the **reg** keyword (default: Tykhonov)
- turn our usual embedding on/off with the **embedall** keyword (default: off)
 - when **embedall** = true, \(X = [1 \; \tilde{U}] \), where \(\tilde{U} \) has standardized columns.

(more on all of this shortly)
Supported losses and regularizers

the current list of supported losses and regularizers is available at the docs page

the Usage page has a section on losses and a section on regularizers
Training, validating, and predicting

Training a model is achieved with

\[
\text{train}(M, \text{lambda}=1e-6, \text{trainfrac}=0.6)
\]

- keyword arguments \text{lambda}, \text{trainfrac} set the regularization weights and fraction of data used for training
- by default, \text{lambda}=1e-10 and \text{trainfrac}=0.8

Prediction and validation

- to get train and test losses, run \text{trainloss}(M) and \text{testloss}(M)
- \text{predict_v_from_test}(M) outputs predictions on the test set
- \text{predict_v_from_u}(M, U) outputs predictions on \(U\)

(more functions are available, see docs)
Cross validation and regularization paths

sweeping over regularization weights is automatic in ERM

\[\text{trainpath}(M, \lambda=\text{logspace}(-3, 3, 50), \text{trainfrac}=0.75) \]

- \(\lambda \) is the list of weights, defaults to \(\text{logspace}(-5, 5, 100) \)
- \(\text{trainfrac} \) is the fraction of data to use for training, defaults to 0.8
- call trainlosspath or testlosspath to get the train or test losses
- call thetaopt or lambdaopt to get the optimal model parameters

Cross validation is also possible

\[\text{trainfolds}(M, \lambda=1e-6, \text{n folds}=15) \]

(defaults are \(1e-10 \) and 5)
Robust regression
Data

code below generates some random data

```python
srand(50)
n, k = 1000, 10; d = k + 1;
U = randn(n, k); theta_true = randn(d);
v = [ones(n) U] * theta_true + randn(n)
v += 15 * (1. * (rand(n) > 0.85)) .* randn(n)  # outliers

(we’ve artificially added some outliers to keep things interesting)
```
Huber regression, with regularization path

the following Julia code uses ERM to train a Huber regression model

using EmpiricalRiskMinimization
include("regpath_data.jl") # data (from previous slide)

compile model
M = Model(U, v, loss=HuberLoss(), embedall=true, verbose=false)

train over multiple regularization weights
trainpath(M, lambdas=logspace(-3, 3, 100), trainfrac=0.8)

capture the list of optimal thetas for each lambda
lambdas, thetas = lambdapath(M), thetapath(M)

capture the list of train/test losses for each lambda
train_losses, test_losses = trainlosspath(M), testlosspath(M)

store lambda (and corresponding theta) giving lowest test error
theta_opt, lambda_opt = thetaopt(M), lambdaopt(M)
Results

running status(M) gives us the following information

--
Optimal results along regpath
 optimal lambda: 0.03274549162877728
 optimal test loss: 0.13207774630515404
 training samples: 800
 test samples: 200
 columns in X: 401
--

ERM took care of the usual embedding, splitting train and test sets, and sweeping over the regularization weights we specified
we retrieved the train and test losses with \texttt{trainlosspath(M)} and \texttt{testlosspath(M)}

\hspace{10pt} this was (much) easier than doing it by hand...
Regularization path

we can plot the components θ_i against λ

\[
\begin{array}{c}
0.3 \\
0.2 \\
0.1 \\
0.0 \\
-0.1 \\
-0.2 \\
-0.3 \\
0.3 \\
0.2 \\
0.1 \\
0.0 \\
-0.1 \\
-0.2 \\
-0.3 \\
\end{array}
\]

\[
\begin{array}{c}
10^{-3} \\
10^{-2} \\
10^{-1} \\
10^0 \\
10^1 \\
10^2 \\
10^3 \\
\end{array}
\]

\[\lambda\]

- to create the figure above, all we had to do was call plot on thetapath(M)''.
Summary
Summary

- you’ll use ERM on future homework assignments
- it’s easy to get started; docs are available on the course webpage
- you’ve now seen a couple of examples covering (some) of the course material
- this package should make it easier to train, test, and validate models
- ERM also supports regularization paths, cross validation
- let us know if you encounter bugs! we hope you won’t find any...