Constant predictors

Sanjay Lall and Stephen Boyd

EE104
Stanford University

Constant predictors

- we explore the simplest possible predictor, which is constant
- $\hat{y}=g_{\theta}(x)=\theta \in \mathbf{R}^{m}$
- a linear regression model with $\phi(u)=1$
- doesn't depend on u, which in fact we don't even need
- we'll use ERM to fit θ to data
- we don't need regularization since the predictor is (completely) insensitive
- different losses lead to different predictors

Losses

- we are given data $y^{1}, \ldots, y^{n} \in \mathbf{R}^{m}$
- we have a loss function $\ell: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$
- $\ell(\hat{y}, y)$ quantifies how badly \hat{y} approximates y
- typical losses for scalar $y(m=1)$:
- quadratic loss: $\ell(\hat{y}, y)=(\hat{y}-y)^{2}$
- absolute loss: $\ell(\hat{y}, y)=|\hat{y}-y|$
- fractional loss: for $\hat{y}, y>0$,

$$
\ell(\hat{y}, y)=\max \left\{\frac{\hat{y}}{y}-1, \frac{y}{\hat{y}}-1\right\}=\exp (|\log \hat{y}-\log y|)-1
$$

(often scaled by 100 to become percentage error)

- typical loss for vector $y(m>1)$: quadratic loss, $\ell(\hat{y}, y)=\|\hat{y}-y\|_{2}^{2}$
- we choose θ to minimize empirical risk, $\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta, y^{i}\right)$
- we'll be able to solve this minimization problem for the losses above, and others
- we'll recover some reasonable choices of a constant approximation of the data, such as mean and median

Convexity

- a function $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ is convex if it for all $w, z \in \mathbf{R}^{k}$ and all $\alpha \in[0,1]$

$$
f(\alpha w+(1-\alpha) z) \leq \alpha f(w)+(1-\alpha) f(z)
$$

- this means the function 'curves upward' or has positive curvature
- in terms of derivatives, convexity can be expressed as
- (if $f^{\prime}(w)$ exists) $f^{\prime}(w)$ is nondecreasing (as w increases)
- (if $f^{\prime \prime}(w)$ exists) $f^{\prime \prime}(w) \geq 0$ for all w

Minimizing convex functions - optimality conditions

for a convex function f

- if f is differentiable f, w minimizes f if and only if $\nabla f(w)=0$
for convex $f: \mathbf{R} \rightarrow \mathbf{R}$ (i.e., $k=1$)
- w minimizes f if and only if $f_{-}^{\prime}(w) \leq 0, f_{+}^{\prime}(w) \geq 0$
- $f_{+}^{\prime}(w)$ is the righthand derivative, $f_{+}^{\prime}(w)=\lim _{t \rightarrow 0, t>0} \frac{f(w+t)-f(w)}{t}$
- $f_{-}^{\prime}(w)$ is the lefthand derivative, $f_{-}^{\prime}(w)=\lim _{t \rightarrow 0, t<0} \frac{f(w+t)-f(w)}{t}$
- these both exist, even if f is not differentiable
- if $f^{\prime}(w)$ exists, then $f_{-}^{\prime}(w)=f_{+}^{\prime}(w)=f^{\prime}(w)$
- simple example: $w=0$ minimizes $f(w)=|w|$, since $f_{-}^{\prime}(0)=-1, f_{+}^{\prime}(0)=1$

ERM and convexity

- for the losses functions listed above (and many others), $\ell(\hat{y}, y)$ is a convex function of \hat{y}
- an average of convex functions is convex, so $\mathcal{L}(\theta)$ is convex
- so the optimality conditions above tell us when θ minimizes $\mathcal{L}(\theta)$
- for scalar y, θ minimizes $\mathcal{L}(\theta)$ when $\mathcal{L}_{-}^{\prime}(\theta) \leq 0, \mathcal{L}_{+}^{\prime}(\theta) \geq 0$

Square loss

ERM with square loss

- for square loss $\ell(\hat{y}, y)=\|\hat{y}-y\|_{2}^{2}$, empirical risk is mean-square error (MSE)

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left\|\theta-y^{i}\right\|_{2}^{2}
$$

- a simple least squares problem, with solution $\theta=\frac{1}{n} \sum_{i=1}^{n} y^{i} \quad$ (which satisfies $\nabla \mathcal{L}(\theta)=0$)
- i.e., best constant predictor with square loss is the average or mean of the data
- with this best predictor, mean square error is the variance of the data

ERM with square loss

Absolute loss

ERM with absolute loss

- for absolute loss $\ell(\hat{y}, y)=|\hat{y}-y|$, empirical risk is mean-absolute error

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left|\theta-y^{i}\right|
$$

- $\mathcal{L}(\theta)$ is convex and piecewise linear, with kink points at the data values y^{1}, \ldots, y^{n}
- we'll see that θ is optimal if and only if it is a median of the data
- another reasonable constant approximation of the data

ERM with absolute loss

Median

- for $\theta \in \mathbf{R}$ define

$$
\begin{aligned}
& n_{1}=\left|\left\{y^{i} \mid y^{i}<\theta\right\}\right| \\
& n_{2}=\left|\left\{y^{i} \mid y^{i}>\theta\right\}\right|
\end{aligned}
$$

number of data points less than θ number of data points greater than θ

- we say θ is a median of the data if

$$
\frac{n_{1}}{n} \leq \frac{1}{2} \quad \text { and } \quad \frac{n_{2}}{n} \leq \frac{1}{2}
$$

- if $\theta \neq y^{i}$ for any i then this is the same as $\frac{n_{1}}{n}=\frac{1}{2}$

Median

- assume data is sorted so $y^{1} \leq y^{2} \leq \cdots \leq y^{n}$
- if n is odd, the median is $\theta=y^{(n+1) / 2} \quad$ (median is unique in this case)
- if n is even, θ is a median if $y^{n / 2} \leq \theta \leq y^{n / 2+1} \quad$ (median is not unique in this case)
- examples:
- the median of $-3.3,-1.7,0.4$ is -1.7
- the median of $-3.3,-1.7,0.4,4.9$ is any number in $[-1.7,0.4]$

Medians minimize empirical risk with absolute loss

- we'll show that θ minimizes $\mathcal{L}(\theta)$ (with absolute loss) if and only if θ is a median of the data
- assume data are sorted, $y^{1} \leq \cdots \leq y^{n}$, then

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n_{1}}\left(\theta-y^{i}\right)+\frac{1}{n} \sum_{i=1+n-n_{2}}^{n}-\left(\theta-y^{i}\right)
$$

- so if θ is not equal to a data value

$$
\mathcal{L}^{\prime}(\theta)=\frac{d}{d \theta} \mathcal{L}(\theta)=\frac{n_{1}}{n}-\frac{n_{2}}{n}
$$

- left and right derivatives are

$$
\mathcal{L}_{-}^{\prime}(\theta)=\frac{2 n_{1}}{n}-1 \quad \mathcal{L}_{+}^{\prime}(\theta)=1-\frac{2 n_{2}}{n}
$$

- θ is optimal means $\mathcal{L}_{-}^{\prime}(\theta) \leq 0$ and $\mathcal{L}_{+}^{\prime}(\theta) \geq 0$, which is

$$
\frac{n_{1}}{n} \leq \frac{1}{2} \quad \frac{n_{2}}{n} \leq \frac{1}{2}
$$

Tilted absolute loss

Tilted absolute value function

- for $\tau \in[0,1]$ the tilted absolute value function is

$$
p_{\tau}(u)= \begin{cases}-\tau u & u<0 \\ (1-\tau) u & u \geq 0\end{cases}
$$

- can be expressed as $p_{\tau}(u)=(1 / 2-\tau) u+(1 / 2)|u|$

ERM with tilted absolute value loss

- empirical risk with tilted absolute loss $\ell(\hat{y}, y)=p_{\tau}(\hat{y}-y)$ is $\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} p_{\tau}(\hat{y}-y)$
- $\mathcal{L}(\theta)$ is convex and piecewise linear, with kink points at the data values y^{1}, \ldots, y^{n}
- for $\tau<1 / 2$, it's worse (more loss) to over-estimate $y(\hat{y}>y$) than to under-estimate
- for $\tau>1 / 2$, it's worse (more loss) to under-estimate y than to overestimate
- we'll see that θ is optimal if it is a τ-quantile of the data
- roughly, the fraction of y^{i} s less than θ is around τ

ERM with tilted absolute loss

Quantiles

- for $\tau \in[0,1]$, we call θ a τ-quantile of the data if

$$
\frac{n_{1}}{n} \leq \tau \leq 1-\frac{n_{2}}{n}
$$

- if $\theta \neq y^{i}$ for all i then this is the same as $\tau=n_{1} / n$
- some common quantiles have names like
- median ($\tau=0.5$)
- quartiles ($\tau=0.25,0.5,0.75$)
- deciles ($\tau=0.1,0.2, \ldots, 0.9$)
- percentiles $(\tau=0.01,0.02, \ldots, 0.99)$

Quantiles

- if the data is $(4,7,7,8,9)$ then
- the 0.1 quantile is 4
- the 0.2 quantile is any number in $[4,7]$
- the 0.5 quantile is 7

τ-quantile minimizes empirical risk with tilted absolute loss

θ minimizes $\mathcal{L}(\theta)$ if and only if it is a τ-quantile

- assume data are sorted, $y^{1} \leq \cdots \leq y^{n}$, then

$$
\mathcal{L}(\theta)=p_{\tau}\left(\theta-y^{1}\right)+\cdots+p_{\tau}\left(\theta-y^{n}\right)=\frac{1}{n} \sum_{i=1}^{n_{1}}(1-\tau)\left(\theta-y^{i}\right)+\frac{1}{n} \sum_{i=1+n-n_{2}}^{n}-\tau\left(\theta-y^{i}\right)
$$

- if θ is not equal to a data value, then $\mathcal{L}^{\prime}(\theta)=\left(n_{1}(1-\tau)-\tau n_{2}\right) / n$
- left and right derivatives are

$$
\begin{aligned}
& \mathcal{L}_{-}^{\prime}(\theta)=\left(n_{1}(1-\tau)-\tau\left(n-n_{1}\right)\right) / n=\frac{n_{1}}{n}-\tau \\
& \mathcal{L}_{+}^{\prime}(\theta)=\left(\left(n-n_{2}\right)(1-\tau)-\tau n_{2}\right) / n=1-\tau-\frac{n_{2}}{n}
\end{aligned}
$$

- θ is optimal means $\mathcal{L}_{-}^{\prime}(\theta) \leq 0$ and $\mathcal{L}_{+}^{\prime}(\theta) \geq 0$, which means $\frac{n_{1}}{n} \leq \tau \leq 1-\frac{n_{2}}{n}$

Fractional loss

ERM with fractional loss

- fractional loss $\ell(\hat{y}, y)=\max \left\{\frac{\hat{y}}{y}-1, \frac{y}{\hat{y}}-1\right\}=\exp (|\log \hat{y}-\log y|)-1$
- empirical risk is

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \max \left\{\frac{\theta}{y^{i}}-1, \frac{y^{i}}{\theta}-1\right\}
$$

- a convex function, with kink points at y^{1}, \ldots, y^{n}
- we call θ that minimizes $\mathcal{L}(\theta)$ the fractional middle of $y^{1}, \ldots, y^{n} \quad$ (not a standard term)

ERM with fractional loss

ERM with fractional loss

- with $y^{1} \leq \cdots \leq y^{n}$ and $y^{k} \leq \theta \leq y^{k+1}$, we have

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{k}\left(\frac{y^{i}}{\theta}-1\right)+\frac{1}{n} \sum_{i=k+1}^{n}\left(\frac{\theta}{y^{i}}-1\right)=-1+\frac{1}{n} \sum_{i=1}^{k} \frac{y^{i}}{\theta}+\frac{1}{n} \sum_{i=k+1}^{n} \frac{\theta}{y^{i}}
$$

- so for $y^{k}<\theta<y^{k+1}$ we have

$$
\mathcal{L}^{\prime}(\theta)=-\frac{1}{\theta^{2}}\left(\frac{1}{n} \sum_{i=1}^{k} y^{i}\right)+\frac{1}{n} \sum_{i=k+1}^{n} \frac{1}{y^{i}}
$$

- $\mathcal{L}^{\prime}(\theta)$ is an increasing function of θ (since it is convex)
- first find k so that $\mathcal{L}_{+}^{\prime}\left(y^{k}\right) \leq 0$ and $\mathcal{L}_{-}^{\prime}\left(y^{k+1}\right) \geq 0$ (using above expression evaluated at y^{k} and y^{k+1})
- setting $\mathcal{L}^{\prime}(\theta)$ to zero we get

$$
\theta=\left(\frac{\sum_{i=1}^{k} y^{i}}{\sum_{i=k+1}^{n} 1 / y^{i}}\right)^{1 / 2}
$$

Summary

Summary

- the simplest predictor is a constant, $\hat{y}=g_{\theta}(u)=\theta$
- for different losses, ERM gives different θ s
- for some common losses, we recover well known predictors of a set of data
- square loss given mean
- absolute loss gives median
- tilted absolute loss gives quantile

