Constant predictors

Sanjay Lall and Stephen Boyd

EE104 Stanford University

Constant predictors

- ▶ we explore the simplest possible predictor, which is *constant*
- $\blacktriangleright \ \hat{y} = g_{\theta}(x) = \theta \in \mathsf{R}^m$
- a linear regression model with $\phi(u) = 1$
- \blacktriangleright doesn't depend on u, which in fact we don't even need
- we'll use ERM to fit θ to data
- ▶ we don't need regularization since the predictor is (completely) insensitive
- different losses lead to different predictors

Losses

- \blacktriangleright we are given data $y^1,\ldots,y^n\in {\sf R}^m$
- we have a *loss* function $\ell : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$
- ▶ $\ell(\hat{y}, y)$ quantifies how badly \hat{y} approximates y
- typical losses for scalar $y \ (m = 1)$:
 - ▶ quadratic loss: $\ell(\hat{y}, y) = (\hat{y} y)^2$
 - ▶ absolute loss: $\ell(\hat{y}, y) = |\hat{y} y|$
 - fractional loss: for $\hat{y}, y > 0$,

$$\ell(\hat{y},y) = \mathsf{max}igg\{rac{\hat{y}}{y}-1,rac{y}{\hat{y}}-1igg\} = \expigl(ert\log \hat{y} - ert\log yertigr) - 1$$

(often scaled by 100 to become *percentage error*)

▶ typical loss for vector y (m > 1): quadratic loss, $\ell(\hat{y}, y) = ||\hat{y} - y||_2^2$

- ▶ we choose θ to minimize empirical risk, $\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta, y^i)$
- ▶ we'll be able to solve this minimization problem for the losses above, and others
- ▶ we'll recover some reasonable choices of a constant approximation of the data, such as mean and median

Convexity

▶ a function $f : \mathbf{R}^k \to \mathbf{R}$ is *convex* if it for all $w, z \in \mathbf{R}^k$ and all $\alpha \in [0, 1]$

$$f(lpha w+(1-lpha)z)\leq lpha f(w)+(1-lpha)f(z)$$

- ▶ this means the function 'curves upward' or has positive curvature
- ▶ in terms of derivatives, convexity can be expressed as
 - (if f'(w) exists) f'(w) is nondecreasing (as w increases)
 - ▶ (if f''(w) exists) $f''(w) \ge 0$ for all w

Minimizing convex functions — optimality conditions

for a convex function f

▶ if f is differentiable f, w minimizes f if and only if $\nabla f(w) = 0$

for convex $f : \mathbf{R} \to \mathbf{R}$ (*i.e.*, k = 1)

- ▶ w minimizes f if and only if $f'_{-}(w) \leq 0$, $f'_{+}(w) \geq 0$
- ▶ $f'_+(w)$ is the righthand derivative, $f'_+(w) = \lim_{t \to 0, t>0} \frac{f(w+t) f(w)}{t}$
- ▶ $f'_{-}(w)$ is the *lefthand derivative*, $f'_{-}(w) = \lim_{t \to 0, t < 0} \frac{f(w+t) f(w)}{t}$
- ▶ these both exist, even if *f* is not differentiable
- ▶ if f'(w) exists, then $f'_{-}(w) = f'_{+}(w) = f'(w)$
- ▶ simple example: w = 0 minimizes f(w) = |w|, since $f'_{-}(0) = -1$, $f'_{+}(0) = 1$

ERM and convexity

- ▶ for the losses functions listed above (and many others), $\ell(\hat{y}, y)$ is a convex function of \hat{y}
- ▶ an average of convex functions is convex, so $\mathcal{L}(\theta)$ is convex
- ▶ so the optimality conditions above tell us when θ minimizes $\mathcal{L}(\theta)$
- ▶ for scalar y, θ minimizes $\mathcal{L}(\theta)$ when $\mathcal{L}'_{-}(\theta) \leq 0$, $\mathcal{L}'_{+}(\theta) \geq 0$

Square loss

▶ for square loss $\ell(\hat{y}, y) = ||\hat{y} - y||_2^2$, empirical risk is *mean-square error* (MSE)

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n \lvert\lvert heta - y^i
vert
brackip$$

- ▶ a simple least squares problem, with solution $\theta = \frac{1}{n} \sum_{i=1}^{n} y^{i}$ (which satisfies $\nabla \mathcal{L}(\theta) = 0$)
- i.e., best constant predictor with square loss is the average or mean of the data
- with this best predictor, mean square error is the variance of the data

ERM with square loss

Absolute loss

ERM with absolute loss

▶ for absolute loss $\ell(\hat{y}, y) = |\hat{y} - y|$, empirical risk is *mean-absolute error*

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n ert heta - y^i$$

• $\mathcal{L}(\theta)$ is convex and piecewise linear, with kink points at the data values y^1, \ldots, y^n

- we'll see that θ is optimal if and only if it is a *median* of the data
- another reasonable constant approximation of the data

ERM with absolute loss

Median

▶ for $\theta \in \mathbf{R}$ define

$$egin{aligned} n_1 &= |\{y^i ~|~ y^i < heta\}| \ n_2 &= |\{y^i ~|~ y^i > heta\}| \end{aligned}$$

number of data points less than θ number of data points greater than θ

• we say θ is a *median* of the data if

$$rac{n_1}{n} \leq rac{1}{2}$$
 and $rac{n_2}{n} \leq rac{1}{2}$

 \blacktriangleright if $heta
eq y^i$ for any i then this is the same as $\displaystyle \frac{n_1}{n} = \displaystyle \frac{1}{2}$

Median

- lacksim assume data is *sorted* so $y^1 \leq y^2 \leq \cdots \leq y^n$
- ▶ if n is odd, the median is $\theta = y^{(n+1)/2}$ (median is unique in this case)
- ▶ if n is even, θ is a median if $y^{n/2} \le \theta \le y^{n/2+1}$ (median is not unique in this case)

examples:

- ▶ the median of -3.3, -1.7, 0.4 is -1.7
- ▶ the median of -3.3, -1.7, 0.4, 4.9 is any number in [-1.7, 0.4]

Medians minimize empirical risk with absolute loss

- we'll show that θ minimizes $\mathcal{L}(\theta)$ (with absolute loss) if and only if θ is a median of the data
- \blacktriangleright assume data are sorted, $y^1 \leq \cdots \leq y^n$, then

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^{n_1} (heta - y^i) + rac{1}{n} \sum_{i=1+n-n_2}^n -(heta - y^i)$$

• so if θ is not equal to a data value

$$\mathcal{L}'(heta) = rac{d}{d heta}\mathcal{L}(heta) = rac{n_1}{n} - rac{n_2}{n}$$

left and right derivatives are

$$\mathcal{L}_{-}^{\prime}(heta)=rac{2n_{1}}{n}-1 \qquad \qquad \mathcal{L}_{+}^{\prime}(heta)=1-rac{2n_{2}}{n}$$

▶ heta is optimal means $\mathcal{L}'_{-}(heta) \leq 0$ and $\mathcal{L}'_{+}(heta) \geq 0$, which is

$$rac{n_1}{n} \leq rac{1}{2} \qquad rac{n_2}{n} \leq rac{1}{2}$$

Tilted absolute loss

Tilted absolute value function

• for $\tau \in [0, 1]$ the *tilted absolute value function* is

$$p_{\, au}(u) = \left\{egin{array}{cc} - au u & u < 0\ (1- au) u & u \geq 0 \end{array}
ight.$$

 \blacktriangleright can be expressed as $p_ au(u) = (1/2 - au)u + (1/2)|u|$

ERM with tilted absolute value loss

- empirical risk with *tilted absolute loss* $\ell(\hat{y}, y) = p_{\tau}(\hat{y} y)$ is $\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} p_{\tau}(\hat{y} y)$
- $\mathcal{L}(\theta)$ is convex and piecewise linear, with kink points at the data values y^1, \ldots, y^n
- ▶ for $\tau < 1/2$, it's worse (more loss) to over-estimate y ($\hat{y} > y$) than to under-estimate
- ▶ for $\tau > 1/2$, it's worse (more loss) to under-estimate y than to overestimate

- we'll see that θ is optimal if it is a τ -quantile of the data
- \blacktriangleright roughly, the fraction of y^i 's less than heta is around au

ERM with tilted absolute loss

Quantiles

▶ for $\tau \in [0, 1]$, we call θ a τ -quantile of the data if

$$\frac{n_1}{n} \leq \tau \leq 1 - \frac{n_2}{n}$$

- \blacktriangleright if $heta
 eq y^i$ for all i then this is the same as $au = n_1/n$
- some common quantiles have names like
 - median ($\tau = 0.5$)
 - quartiles ($\tau = 0.25, 0.5, 0.75$)
 - deciles ($\tau = 0.1, 0.2, \dots, 0.9$)
 - percentiles ($\tau = 0.01, 0.02, \dots, 0.99$)

Quantiles

- ▶ if the data is (4,7,7,8,9) then
 - ▶ the 0.1 quantile is 4
 - ▶ the 0.2 quantile is any number in [4,7]
 - ▶ the 0.5 quantile is 7

$\tau\text{-}\mathsf{quantile}$ minimizes empirical risk with tilted absolute loss

 θ minimizes $\mathcal{L}(\theta)$ if and only if it is a τ -quantile

 \blacktriangleright assume data are sorted, $y^1 \leq \cdots \leq y^n$, then

$$\mathcal{L}(heta) = p_{ au}(heta - y^1) + \dots + p_{ au}(heta - y^n) = rac{1}{n}\sum_{i=1}^{n_1}(1 - au)(heta - y^i) + rac{1}{n}\sum_{i=1+n-n_2}^n - au(heta - y^i)$$

▶ if heta is not equal to a data value, then $\mathcal{L}'(heta) = (n_1(1- au) - au n_2)/n$

left and right derivatives are

$$egin{split} \mathcal{L}'_-(heta) &= (n_1(1- au) - au(n-n_1))/n = rac{n_1}{n} - au \ \mathcal{L}'_+(heta) &= ((n-n_2)(1- au) - au n_2)/n = 1 - au - rac{n_2}{n} \end{split}$$

▶ heta is optimal means $\mathcal{L}_{-}'(heta) \leq 0$ and $\mathcal{L}_{+}'(heta) \geq 0$, which means $rac{n_1}{n} \leq au \leq 1 - rac{n_2}{n}$

Fractional loss

ERM with fractional loss

$$\blacktriangleright \ \, \mathsf{fractional} \ \, \mathsf{loss} \ \, \ell(\hat{y},y) = \mathsf{max}\Big\{ \tfrac{\hat{y}}{y} - 1, \tfrac{y}{\hat{y}} - 1 \Big\} = \exp\big(|\!\log \hat{y} - \log y|\big) - 1$$

empirical risk is

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n \maxiggl\{rac{ heta}{y^i} - 1, rac{y^i}{ heta} - 1iggr\}$$

- \blacktriangleright a convex function, with kink points at y^1,\ldots,y^n
- we call θ that minimizes $\mathcal{L}(\theta)$ the *fractional middle* of y^1, \ldots, y^n (not a standard term)

ERM with fractional loss

ERM with fractional loss

• with
$$y^1 \leq \cdots \leq y^n$$
 and $y^k \leq \theta \leq y^{k+1}$, we have

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^k \left(\frac{y^i}{\theta} - 1\right) + \frac{1}{n} \sum_{i=k+1}^n \left(\frac{\theta}{y^i} - 1\right) = -1 + \frac{1}{n} \sum_{i=1}^k \frac{y^i}{\theta} + \frac{1}{n} \sum_{i=k+1}^n \frac{\theta}{y^i}$$

 \blacktriangleright so for $y^k < heta < y^{k+1}$ we have

$$\mathcal{L}'(heta) = -rac{1}{ heta^2} \left(rac{1}{n} \sum_{i=1}^k y^i
ight) + rac{1}{n} \sum_{i=k+1}^n rac{1}{y^i}$$

- $\mathcal{L}'(\theta)$ is an increasing function of θ (since it is convex)
- ▶ first find k so that $\mathcal{L}'_+(y^k) \leq 0$ and $\mathcal{L}'_-(y^{k+1}) \geq 0$ (using above expression evaluated at y^k and y^{k+1})
- setting $\mathcal{L}'(\theta)$ to zero we get

$$heta = \left(rac{\sum_{i=1}^k y^i}{\sum_{i=k+1}^n 1/y^i}
ight)^{1/2}$$

Summary

- \blacktriangleright the simplest predictor is a constant, $\hat{y} = g_{ heta}(u) = heta$
- ▶ for different losses, ERM gives different θ s
- ▶ for some common losses, we recover well known predictors of a set of data
 - square loss given mean
 - absolute loss gives median
 - ▶ tilted absolute loss gives quantile