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Constant predictors

I we explore the simplest possible predictor, which is constant

I ŷ = g�(x) = � 2 Rm

I a linear regression model with �(u) = 1

I doesn’t depend on u, which in fact we don’t even need

I we’ll use ERM to fit � to data

I we don’t need regularization since the predictor is (completely) insensitive

I different losses lead to different predictors
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Losses

I we are given data y1; : : : ; yn 2 Rm

I we have a loss function ` : R� R ! R

I `(ŷ; y) quantifies how badly ŷ approximates y

I typical losses for scalar y (m = 1):

I quadratic loss: `(ŷ; y) = (ŷ � y)2

I absolute loss: `(ŷ; y) = jŷ � yj

I fractional loss: for ŷ; y > 0,

`(ŷ; y) = max
n
ŷ

y
� 1;

y

ŷ
� 1

o
= exp

�
jlog ŷ � log yj

�
� 1

(often scaled by 100 to become percentage error)

I typical loss for vector y (m > 1): quadratic loss, `(ŷ; y) = kŷ � yk22
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ERM

I we choose � to minimize empirical risk, L(�) = 1
n

Pn

i=1
`(�; yi)

I we’ll be able to solve this minimization problem for the losses above, and others

I we’ll recover some reasonable choices of a constant approximation of the data, such as mean and median
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Convexity

I a function f : Rk ! R is convex if it for all w; z 2 Rk and all � 2 [0; 1]

f(�w + (1� �)z) � �f(w) + (1� �)f(z)

I this means the function ‘curves upward’ or has positive curvature

I in terms of derivatives, convexity can be expressed as

I (if f 0(w) exists) f 0(w) is nondecreasing (as w increases)

I (if f 00(w) exists) f 00(w) � 0 for all w
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Minimizing convex functions — optimality conditions

for a convex function f

I if f is differentiable f , w minimizes f if and only if rf(w) = 0

for convex f : R ! R (i.e., k = 1)

I w minimizes f if and only if f 0�(w) � 0, f 0+(w) � 0

I f 0+(w) is the righthand derivative, f 0+(w) = limt!0;t>0
f(w+t)�f(w)

t

I f 0�(w) is the lefthand derivative, f 0�(w) = limt!0;t<0
f(w+t)�f(w)

t

I these both exist, even if f is not differentiable

I if f 0(w) exists, then f 0�(w) = f 0+(w) = f 0(w)

I simple example: w = 0 minimizes f(w) = jwj, since f 0�(0) = �1, f 0+(0) = 1
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ERM and convexity

I for the losses functions listed above (and many others), `(ŷ; y) is a convex function of ŷ

I an average of convex functions is convex, so L(�) is convex

I so the optimality conditions above tell us when � minimizes L(�)

I for scalar y, � minimizes L(�) when L0�(�) � 0, L0+(�) � 0
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Square loss
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ERM with square loss

I for square loss `(ŷ; y) = kŷ � yk22, empirical risk is mean-square error (MSE)

L(�) =
1

n

nX
i=1

k� � yik22

I a simple least squares problem, with solution � = 1
n

Pn

i=1
yi (which satisfies rL(�) = 0)

I i.e., best constant predictor with square loss is the average or mean of the data

I with this best predictor, mean square error is the variance of the data
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ERM with square loss
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Absolute loss
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ERM with absolute loss

I for absolute loss `(ŷ; y) = jŷ � yj, empirical risk is mean-absolute error

L(�) =
1

n

nX
i=1

j� � yij

I L(�) is convex and piecewise linear, with kink points at the data values y1; : : : ; yn

I we’ll see that � is optimal if and only if it is a median of the data

I another reasonable constant approximation of the data
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ERM with absolute loss
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Median

I for � 2 R define

n1 = jfyi j yi < �gj number of data points less than �

n2 = jfyi j yi > �gj number of data points greater than �

I we say � is a median of the data if

n1
n
�

1

2
and

n2
n
�

1

2

I if � 6= yi for any i then this is the same as
n1
n

=
1

2
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Median

I assume data is sorted so y1 � y2 � � � � � yn

I if n is odd, the median is � = y(n+1)=2 (median is unique in this case)

I if n is even, � is a median if yn=2 � � � yn=2+1 (median is not unique in this case)

I examples:

I the median of -3.3, -1.7, 0.4 is -1.7

I the median of -3.3, -1.7, 0.4, 4.9 is any number in [�1:7; 0:4]

15



Medians minimize empirical risk with absolute loss

I we’ll show that � minimizes L(�) (with absolute loss) if and only if � is a median of the data

I assume data are sorted, y1 � � � � � yn, then

L(�) =
1

n

n1X
i=1

(� � yi) +
1

n

nX
i=1+n�n2

�(� � yi)

I so if � is not equal to a data value

L0(�) =
d

d�
L(�) =

n1
n
�

n2
n

I left and right derivatives are

L0�(�) =
2n1
n

� 1 L0+(�) = 1�
2n2
n

I � is optimal means L0�(�) � 0 and L0+(�) � 0, which is

n1
n
�

1

2

n2
n
�

1

2
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Tilted absolute loss
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Tilted absolute value function

I for � 2 [0; 1] the tilted absolute value function is

p� (u) =

�
��u u < 0

(1� � )u u � 0

I can be expressed as p� (u) = (1=2� � )u+ (1=2)juj
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ERM with tilted absolute value loss

I empirical risk with tilted absolute loss `(ŷ; y) = p� (ŷ � y) is L(�) = 1
n

Pn

i=1
p� (ŷ � y)

I L(�) is convex and piecewise linear, with kink points at the data values y1; : : : ; yn

I for � < 1=2, it’s worse (more loss) to over-estimate y (ŷ > y) than to under-estimate

I for � > 1=2, it’s worse (more loss) to under-estimate y than to overestimate

I we’ll see that � is optimal if it is a � -quantile of the data

I roughly, the fraction of yi’s less than � is around �
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ERM with tilted absolute loss

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.2

0.4

0.6

0.8

1.0

(
)

= 0.25
tilted absolute loss
=0.25 quantile

y^i

20



Quantiles

I for � 2 [0; 1], we call � a � -quantile of the data if

n1
n
� � � 1�

n2
n

I if � 6= yi for all i then this is the same as � = n1=n

I some common quantiles have names like

I median (� = 0:5)

I quartiles (� = 0:25; 0:5; 0:75)

I deciles (� = 0:1; 0:2; : : : ; 0:9)

I percentiles (� = 0:01; 0:02; : : : ; 0:99)
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Quantiles
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I if the data is (4,7,7,8,9) then
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� -quantile minimizes empirical risk with tilted absolute loss

� minimizes L(�) if and only if it is a � -quantile

I assume data are sorted, y1 � � � � � yn, then

L(�) = p� (� � y1) + � � �+ p� (� � yn) =
1

n

n1X
i=1

(1� � )(� � yi) +
1

n

nX
i=1+n�n2

�� (� � yi)

I if � is not equal to a data value, then L0(�) = (n1(1� � )� �n2)=n

I left and right derivatives are

L0�(�) = (n1(1� � )� � (n� n1))=n =
n1
n
� �

L0+(�) = ((n� n2)(1� � )� �n2)=n = 1� � �
n2
n

I � is optimal means L0�(�) � 0 and L0+(�) � 0, which means
n1
n
� � � 1�

n2
n

23



Fractional loss
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ERM with fractional loss
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I fractional loss `(ŷ; y) = max
n
ŷ
y
� 1; y

ŷ
� 1
o

= exp
�
jlog ŷ � log yj

�
� 1

I empirical risk is

L(�) =
1

n

nX
i=1

max
n
�

yi
� 1;

yi

�
� 1
o

I a convex function, with kink points at y1; : : : ; yn

I we call � that minimizes L(�) the fractional middle of y1; : : : ; yn (not a standard term)
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ERM with fractional loss
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ERM with fractional loss

I with y1 � � � � � yn and yk � � � yk+1, we have

L(�) =
1

n

kX
i=1

�
yi

�
� 1

�
+

1

n

nX
i=k+1

�
�

yi
� 1

�
= �1 +

1

n

kX
i=1

yi

�
+

1

n

nX
i=k+1

�

yi

I so for yk < � < yk+1 we have

L0(�) = �
1

�2

 
1

n

kX
i=1

yi

!
+

1

n

nX
i=k+1

1

yi

I L0(�) is an increasing function of � (since it is convex)

I first find k so that L0+(yk) � 0 and L0�(yk+1) � 0 (using above expression evaluated at yk and yk+1)

I setting L0(�) to zero we get

� =

 Pk

i=1
yiPn

i=k+1
1=yi

!1=2
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Summary
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Summary

I the simplest predictor is a constant, ŷ = g�(u) = �

I for different losses, ERM gives different �s

I for some common losses, we recover well known predictors of a set of data

I square loss given mean

I absolute loss gives median

I tilted absolute loss gives quantile
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