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Categorical outputs

I we consider categorical raw outputs, v 2 V, V a finite set

I V = fv1; : : : ; vKg is the label set; vi are called classes or labels or categories

I called Boolean for K = 2, e.g.,

I V = ftrue; falseg

I V = fpositive;negativeg

I called multi-class for K > 2, e.g.,

I V = {yes, maybe, no}

I V = {albania, azerbaijan, . . . }

I V = {hindi, tamil, . . . }

I V = set of English words in some dictionary

I V = set of m! possible orders of m horses in a race

I we often take V = f1; : : : ;Kg
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Classifiers

I predicting a categorical raw output v 2 V given a raw input u 2 U is called classification

I called Boolean classification when K = 2

I called multi-class classification when K > 2

I predictor has form G : U ! V

I v̂ = G(u) is our prediction of v, given u

I in this context, G is called a classifier

I roughly speaking, classifier classifies all u 2 U into those with predictions G(u) = vi, i = 1; : : : ;K
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Example
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I U = R2, V = f�1; 1g

I classifier shown with data set u1; : : : ; un, v1; : : : ; vn, red = �1 and blue = 1
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Applications

I medical diagnosis

I u contains patient attributes, test results

I Boolean v encodes disease status (has disease or not), or multi-class, e.g., V = fcovid19; flu;coldg

I advertising

I u contains attributes of a person and an ad shown to them

I v encodes whether they buy the item, click on the ad, etc..

I fraud detection

I u contains attributes of a proposed transaction

I v 2 V = ffraud;validg

I image classification

I u is an image

I v 2 V = flion;tree;bus; : : :g
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Applications

I spam filter

I u contains attributes of an email message

I v 2 V = fspam;hamg

I sports forecasting

I u contains attributes of a game or match, team A versus team B

I v encodes game winner, V = fA;B;tieg

I topic detection

I u is an article or news item

I v encodes topic, e.g.V = fpolitics; sports;business; : : :g

I sentence parsing

I u is a sentence

I v encodes grammatical parsing of sentence (a labeled tree)
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Performance metrics for Boolean classification
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Error rate

I we are given a data set u1; : : : ; un, v1; : : : ; vn

I predictions are v̂i = G(ui), i = 1; : : : ; n

I prediction is correct if v̂ = v, wrong or error if v̂ 6= v

I error rate E is fraction of errors,
E =

1

n

��fi j v̂i 6= vig
��

(jAj is the number of elements of a finite set A)

I error rate is the simplest performance metric for a classifier

I we can validate a classifier by evaluating its error rate on unseen or held back (test) data
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The two types of errors in Boolean classification

I consider Boolean classification with V = f�1; 1g

I class v = �1 is called negative, v = 1 is called positive

I only four possible values for the data pair v̂, v:

I true positive if v̂ = 1 and v = 1

I true negative if v̂ = �1 and v = �1

I false negative or type II error if v̂ = �1 and v = 1

I false positive or type I error if v̂ = 1 and v = �1
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Boolean confusion matrix

I for a predictor and a data set the confusion matrix is

C =

�
# true negatives # false negatives
# false positives # true positives

�
=

�
Ctn Cfn

Cfp Ctp

�

I Ctn + Cfn + Cfp + Ctp = n (total number of examples)

I Nn = Ctn + Cfp is number of negative examples

I Np = Cfn + Ctp is number of positive examples

I diagonal entries give numbers of correct predictions

I off-diagonal entries give numbers of incorrect predictions of the two types
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Some Boolean classification performance metrics

I confusion matrix

�
Ctn Cfn

Cfp Ctp

�

I the basic error measures:

I false positive rate is Cfp=n

I false negative rate is Cfn=n

I error rate is (Cfn + Cfp)=n

I error measures some people use:

I true positive rate or sensitivity or recall is Ctp=Np (fraction of true positives we correctly guess)

I false alarm rate is Cfp=Nn (fraction of true negatives we incorrectly guess as positive)

I specificity or true negative rate is Ctn=Nn (fraction of true negatives we correctly guess)

I precision is Ctp=(Ctp + Cfp) (fraction of our positive guesses that really are positive)
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Neyman-Pearson metric

I we have two metrics or objectives for a Boolean classifier: false positive and false negative rate

I we want both small

I to obtain a single (number) metric, we combine them with a weight to get the Neyman-Pearson metric

ENP = �Cfn=n+ Cfp=n

I � > 0 sets how much we care about false negatives, compared to false positives

I for � > 1, false negatives upset us more than false positives

I for � < 1, false negatives upset us less than false positives

I for � = 1, ENP = E, the overall error rate
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False positive and false negatives

I Boolean classifier has two objectives: false positive rate
and true positive rate

I plot the performance of each classifier

I G3 is worse than G2 (more false positives and more false
negatives)

I G1 has fewer false negatives than G2, but more false
positives
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ROC curve

I red points are Pareto optimal; no other classifier is better
in both Cfp and Cfn

I set of all Pareto optimal points is called the ROC or
operating characteristic

I ROC stands for Receiver Operating Characteristic (from
WWII, never spelled out)

I it is common to develop multiple classifiers, which trade off
these two error rates
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Neyman-Pearson error

I we can measure performance in different directions in this
plane

I let � > 0 be how much more false negatives irritate us than
false positives

I instead of using the error-rate as a performance metric, use
the weighted-sum

�Cfn=n+ Cfp=n

I a scalarization of two objectives called the Neyman-Pearson
error

I when � = 1, the Neyman-Pearson error is the error rate

I each green line shows points where �Cfn=n+ Cfp=n is
constant; slope of dashed lines is ��
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Example

I red points have v = �1,
blue have v = 1

I false negative are blue points
for which the classifier would
predict red

I plot 1 has C =

�
24 1

16 59

�

I plot 2 has C =

�
32 8

8 52

�

I plot 3 has C =

�
38 23

2 37

�
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Performance metrics for multiclass classification
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Error types

I there are K2 possible values of (v̂; v), since v̂; v 2 fv1; : : : ; vkg

I v̂ = vi, v = vj means the true value is vj , and we predict vi

I prediction is correct when vi = vj , and an error when vi 6= vj

I we further distinguish K(K � 1) types of errors, one for each pair i; j with i 6= j

I for i 6= j, v̂ = vi, v = vj means we mistook vj for vi

I i.e., the value is vj , but we guess vi
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Confusion matrix

I K �K confusion matrix is defined by

Cij = # records with v̂ = vi and v = vj

(warning: some people use the transpose of C)

I entries in C add up to n

I column sums of C give number of records in each class in the data set

I Cii is the number of times we predict vi correctly

I Cij for i 6= j is the number of times we mistook vj for vi

I there are K(K � 1) different error rates, Eij = Cij=n, i 6= j

I the overall error rate is E =
P

i 6=j
Cij=n =

P
i6=j

Eij
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Example

I red = 1, green = 2, blue = 3

I confusion matrix C =

2
4 39 5 1

1 34 2

0 1 17

3
5

I error rates E =

2
4 0 0:05 0:01

0:01 0 0:02

0 0:01 0

3
5

I error rate = 10%
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Neyman-Pearson error

I Ej =
P

i 6=j
Cij is number of times we mistook vj for another class

I Ej=n is the error rate of mistaking vj

I we will scalarize these K error rates using a weighted sum

I the Neyman-Pearson error is
KX
j=1

�jEj =
X
i 6=j

�jCij=n

where � is a weight vector with nonnegative entries

I �j is how much we care about mistaking vj

I for �j = 1 for all i, Neyman-Pearson error is the error rate
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