Classifiers

Sanjay Lall and Stephen Boyd

EE104 Stanford University

Categorical outputs

- ▶ we consider categorical raw outputs, $v \in V$, V a finite set
- $\triangleright \mathcal{V} = \{v_1, \ldots, v_K\}$ is the *label set*; v_i are called *classes* or *labels* or *categories*
- called *Boolean* for K = 2, *e.g.*,
 - $\blacktriangleright \ \mathcal{V} = \{\texttt{true}, \texttt{false}\}$
 - ▶ $\mathcal{V} = \{\text{positive}, \text{negative}\}$
- ▶ called *multi-class* for K > 2, *e.g.*,
 - ▶ $\mathcal{V} = \{$ Yes, Maybe, No $\}$
 - ▶ $\mathcal{V} = \{$ Albania, Azerbaijan, ... $\}$
 - ▶ $\mathcal{V} = \{$ HINDI, TAMIL, ... $\}$
 - $\mathcal{V} =$ set of English words in some dictionary
 - $\mathcal{V} =$ set of m! possible orders of m horses in a race
- we often take $\mathcal{V} = \{1, \dots, K\}$

Classifiers

- ▶ predicting a categorical raw output $v \in V$ given a raw input $u \in U$ is called *classification*
- called *Boolean classification* when K = 2
- called *multi-class classification* when K > 2
- predictor has form $G: \mathcal{U} \to \mathcal{V}$
- $\hat{v} = G(u)$ is our prediction of v, given u
- ▶ in this context, G is called a *classifier*
- ▶ roughly speaking, classifier classifies all $u \in U$ into those with predictions $G(u) = v_i, i = 1, ..., K$

Example

 $\blacktriangleright \ \mathcal{U} = \mathbf{R}^2, \ \mathcal{V} = \{-1, 1\}$

▶ classifier shown with data set $u^1, \ldots, u^n, v^1, \ldots, v^n$, red = -1 and blue = 1

Applications

- medical diagnosis
 - ▶ *u* contains patient attributes, test results
 - ▶ Boolean v encodes disease status (has disease or not), or multi-class, *e.g.*, $\mathcal{V} = \{\text{COVID19}, \text{FLU}, \text{COLD}\}$
- advertising
 - \blacktriangleright *u* contains attributes of a person and an ad shown to them
 - ▶ v encodes whether they buy the item, click on the ad, etc..
- fraud detection
 - ▶ *u* contains attributes of a proposed transaction
 - $\blacktriangleright \ v \in \mathcal{V} = \{\texttt{fraud}, \texttt{valid}\}$
- image classification
 - ▶ *u* is an image
 - ▶ $v \in \mathcal{V} = \{$ Lion, Tree, Bus, . . . $\}$

Applications

- ▶ spam filter
 - u contains attributes of an email message
 - ▶ $v \in \mathcal{V} = \{$ Spam, Ham $\}$
- sports forecasting
 - ▶ *u* contains attributes of a game or match, team A versus team B
 - v encodes game winner, $\mathcal{V} = \{A, B, TIE\}$
- topic detection
 - ▶ *u* is an article or news item
 - ▶ v encodes topic, $e.g.V = \{\text{POLITICS, SPORTS, BUSINESS, ...}\}$
- sentence parsing
 - u is a sentence
 - ▶ v encodes grammatical parsing of sentence (a labeled tree)

Performance metrics for Boolean classification

Error rate

- \blacktriangleright we are given a data set $u^1,\ldots,u^n, v^1,\ldots,v^n$
- \blacktriangleright predictions are $\hat{v}^i = G(u^i)$, $i=1,\ldots,n$
- ▶ prediction is *correct* if $\hat{v} = v$, *wrong* or *error* if $\hat{v} \neq v$
- ▶ *error rate E* is fraction of errors,

$$E=rac{1}{n}\left|\{i\mid\hat{v}^i
eq v^i\}
ight|$$

(|A| is the number of elements of a finite set A)

- error rate is the simplest performance metric for a classifier
- ▶ we can validate a classifier by evaluating its error rate on unseen or held back (test) data

The two types of errors in Boolean classification

- consider Boolean classification with $\mathcal{V} = \{-1, 1\}$
- ▶ class v = -1 is called *negative*, v = 1 is called *positive*
- only four possible values for the data pair \hat{v} , v:
 - **•** *true positive* if $\hat{v} = 1$ and v = 1
 - **b** true negative if $\hat{v} = -1$ and v = -1
 - false negative or type II error if $\hat{v} = -1$ and v = 1
 - false positive or type I error if $\hat{v} = 1$ and v = -1

Boolean confusion matrix

for a predictor and a data set the confusion matrix is

$$C = \begin{bmatrix} \# \text{ true negatives } \# \text{ false negatives} \\ \# \text{ false positives } \# \text{ true positives} \end{bmatrix} = \begin{bmatrix} C_{\text{tn}} & C_{\text{fn}} \\ C_{\text{fp}} & C_{\text{tp}} \end{bmatrix}$$

• $C_{tn} + C_{fn} + C_{fp} + C_{tp} = n$ (total number of examples)

- $N_n = C_{tn} + C_{fp}$ is number of negative examples
- $N_{\rm p} = C_{\rm fn} + C_{\rm tp}$ is number of positive examples
- diagonal entries give numbers of correct predictions
- off-diagonal entries give numbers of incorrect predictions of the two types

Some Boolean classification performance metrics

$$\blacktriangleright \text{ confusion matrix } \begin{bmatrix} C_{tn} & C_{fn} \\ C_{fp} & C_{tp} \end{bmatrix}$$

- ▶ the basic error measures:
 - ▶ false positive rate is $C_{\rm fp}/n$
 - false negative rate is C_{fn}/n
 - error rate is $(C_{fn} + C_{fp})/n$
- error measures some people use:
 - true positive rate or sensitivity or recall is C_{tp}/N_p (fraction of true positives we correctly guess)
 - ▶ false alarm rate is $C_{\rm fp}/N_{\rm n}$ (fraction of true negatives we incorrectly guess as positive)
 - ▶ specificity or true negative rate is C_{tn}/N_n (fraction of true negatives we correctly guess)
 - ▶ precision is $C_{tp}/(C_{tp} + C_{fp})$ (fraction of our positive guesses that really are positive)

- ▶ we have two metrics or objectives for a Boolean classifier: false positive and false negative rate
- we want both small
- ▶ to obtain a single (number) metric, we combine them with a weight to get the Neyman-Pearson metric

$$E^{\mathsf{NP}} = \kappa C_{\mathsf{fn}}/n + C_{\mathsf{fp}}/n$$

- ightarrow $\kappa > 0$ sets how much we care about false negatives, compared to false positives
 - ▶ for $\kappa > 1$, false negatives upset us more than false positives
 - ▶ for $\kappa < 1$, false negatives upset us less than false positives
 - for $\kappa = 1$, $E^{NP} = E$, the overall error rate

False positive and false negatives

- Boolean classifier has two objectives: false positive rate and true positive rate
- plot the performance of each classifier
- ▶ G₃ is worse than G₂ (more false positives and more false negatives)
- ▶ G₁ has fewer false negatives than G₂, but more false positives

ROC curve

- red points are *Pareto optimal*; no other classifier is better in *both* C_{fp} and C_{fn}
- set of all Pareto optimal points is called the ROC or operating characteristic
- ROC stands for Receiver Operating Characteristic (from WWII, never spelled out)
- it is common to develop multiple classifiers, which trade off these two error rates

Neyman-Pearson error

- we can measure performance in different directions in this plane
- let κ > 0 be how much more false negatives irritate us than false positives
- instead of using the error-rate as a performance metric, use the weighted-sum

 $\kappa C_{
m fn}/n + C_{
m fp}/n$

- a scalarization of two objectives called the Neyman-Pearson error
- when $\kappa = 1$, the Neyman-Pearson error is the *error rate*
- ▶ each green line shows points where $\kappa C_{\text{fn}}/n + C_{\text{fp}}/n$ is constant; slope of dashed lines is $-\kappa$

Example

- ▶ red points have v = −1, blue have v = 1
- false negative are blue points for which the classifier would predict red

plot 1 has C =
$$\begin{bmatrix} 24 & 1\\ 16 & 59 \end{bmatrix}$$
plot 2 has C = $\begin{bmatrix} 32 & 8\\ 8 & 52 \end{bmatrix}$
plot 3 has C = $\begin{bmatrix} 38 & 23\\ 2 & 37 \end{bmatrix}$

Performance metrics for multiclass classification

Error types

- ▶ there are K^2 possible values of (\hat{v}, v) , since $\hat{v}, v \in \{v_1, \dots, v_k\}$
- ightarrow $\hat{v} = v_i$, $v = v_j$ means the true value is v_j , and we predict v_i
- ▶ prediction is correct when $v_i = v_j$, and an error when $v_i \neq v_j$
- ▶ we further distinguish K(K-1) types of errors, one for each pair i, j with $i \neq j$
- ▶ for $i \neq j$, $\hat{v} = v_i$, $v = v_j$ means we mistook v_j for v_i
- *i.e.*, the value is v_j , but we guess v_i

Confusion matrix

• $K \times K$ confusion matrix is defined by

 $C_{ij} = \#$ records with $\hat{v} = v_i$ and $v = v_j$

(warning: some people use the transpose of C)

- entries in C add up to n
- ▶ column sums of C give number of records in each class in the data set
- C_{ii} is the number of times we predict v_i correctly
- ▶ C_{ij} for $i \neq j$ is the number of times we mistook v_j for v_i
- ▶ there are K(K-1) different *error rates*, $E_{ij} = C_{ij}/n$, $i \neq j$
- \blacktriangleright the overall error rate is $E = \sum_{i
 eq j} C_{ij} / n = \sum_{i
 eq j} E_{ij}$

Example

red = 1, green = 2, blue = 3
confusion matrix
$$C = \begin{bmatrix} 39 & 5 & 1 \\ 1 & 34 & 2 \\ 0 & 1 & 17 \end{bmatrix}$$
*u*₂
error rates $E = \begin{bmatrix} 0 & 0.05 & 0.01 \\ 0.01 & 0 & 0.02 \\ 0 & 0.01 & 0 \end{bmatrix}$
error rate = 10%

Neyman-Pearson error

 \blacktriangleright $E_j = \sum_{i
eq j} C_{ij}$ is number of times we mistook v_j for another class

- E_j/n is the error rate of mistaking v_j
- \blacktriangleright we will scalarize these K error rates using a weighted sum
- ▶ the Neyman-Pearson error is

$$\sum_{j=1}^K \kappa_j E_j = \sum_{i
eq j} \kappa_j C_{ij}/n$$

where κ is a weight vector with nonnegative entries

- κ_j is how much we care about mistaking v_j
- ▶ for $\kappa_j = 1$ for all *i*, Neyman-Pearson error is the *error rate*