Classifiers

Sanjay Lall and Stephen Boyd

EE104
Stanford University

Categorical outputs

- we consider categorical raw outputs, $v \in \mathcal{V}, \mathcal{V}$ a finite set
- $\mathcal{V}=\left\{v_{1}, \ldots, v_{K}\right\}$ is the label set; v_{i} are called classes or labels or categories
- called Boolean for $K=2$, e.g.,
- $\mathcal{V}=\{$ true, false $\}$
- $\mathcal{V}=\{$ Positive, negative $\}$
- called multi-class for $K>2$, e.g.,
- $\mathcal{V}=\{$ yes, maybe, no $\}$
- $\mathcal{V}=\{$ albania, azerbaijan, $\ldots\}$
- $\mathcal{V}=\{$ hindi, tamil, $\ldots\}$
- $\mathcal{V}=$ set of English words in some dictionary
- $\mathcal{V}=$ set of m ! possible orders of m horses in a race
- we often take $\mathcal{V}=\{1, \ldots, K\}$

Classifiers

- predicting a categorical raw output $v \in \mathcal{V}$ given a raw input $u \in \mathcal{U}$ is called classification
- called Boolean classification when $K=2$
- called multi-class classification when $K>2$
- predictor has form $G: \mathcal{U} \rightarrow \mathcal{V}$
- $\hat{v}=G(u)$ is our prediction of v, given u
- in this context, G is called a classifier
- roughly speaking, classifier classifies all $u \in \mathcal{U}$ into those with predictions $G(u)=v_{i}, i=1, \ldots, K$

Example

- $\mathcal{U}=\mathbf{R}^{2}, \mathcal{V}=\{-1,1\}$
- classifier shown with data set $u^{1}, \ldots, u^{n}, v^{1}, \ldots, v^{n}$, red $=-1$ and blue $=1$

Applications

- medical diagnosis
- u contains patient attributes, test results
- Boolean v encodes disease status (has disease or not), or multi-class, e.g., $\mathcal{V}=\{\operatorname{covid} 19$, FLU, COLD $\}$
- advertising
- u contains attributes of a person and an ad shown to them
- v encodes whether they buy the item, click on the ad, etc..
- fraud detection
- u contains attributes of a proposed transaction
- $v \in \mathcal{V}=\{$ FRAUD, valid $\}$
- image classification
- u is an image
- $v \in \mathcal{V}=\{$ LION, TREE, BUS, $\ldots\}$

Applications

- spam filter
- u contains attributes of an email message
- $v \in \mathcal{V}=\{$ SPAM, HAM$\}$
- sports forecasting
- u contains attributes of a game or match, team A versus team B
- v encodes game winner, $\mathcal{V}=\{\mathrm{A}, \mathrm{B}$, TIE $\}$
- topic detection
- u is an article or news item
- v encodes topic, e.g. $\mathcal{V}=\{$ POLITICS, SPORTS, BUSINESS, $\ldots\}$
- sentence parsing
- u is a sentence
- v encodes grammatical parsing of sentence (a labeled tree)

Performance metrics for Boolean classification

Error rate

- we are given a data set $u^{1}, \ldots, u^{n}, v^{1}, \ldots, v^{n}$
- predictions are $\hat{v}^{i}=G\left(u^{i}\right), i=1, \ldots, n$
- prediction is correct if $\hat{v}=v$, wrong or error if $\hat{v} \neq v$
- error rate E is fraction of errors,

$$
E=\frac{1}{n}\left|\left\{i \mid \hat{v}^{i} \neq v^{i}\right\}\right|
$$

$(|A|$ is the number of elements of a finite set A)

- error rate is the simplest performance metric for a classifier
- we can validate a classifier by evaluating its error rate on unseen or held back (test) data

The two types of errors in Boolean classification

- consider Boolean classification with $\mathcal{V}=\{-1,1\}$
- class $v=-1$ is called negative, $v=1$ is called positive
- only four possible values for the data pair \hat{v}, v :
- true positive if $\hat{v}=1$ and $v=1$
- true negative if $\hat{v}=-1$ and $v=-1$
- false negative or type II error if $\hat{v}=-1$ and $v=1$
- false positive or type I error if $\hat{v}=1$ and $v=-1$

Boolean confusion matrix

- for a predictor and a data set the confusion matrix is

$$
C=\left[\begin{array}{cc}
\# \text { true negatives } & \# \text { false negatives } \\
\# \text { false positives } & \# \text { true positives }
\end{array}\right]=\left[\begin{array}{cc}
C_{\mathrm{tn}} & C_{\mathrm{fn}} \\
C_{\mathrm{fp}} & C_{\mathrm{tp}}
\end{array}\right]
$$

$-C_{\mathrm{tn}}+C_{\mathrm{fn}}+C_{\mathrm{fp}}+C_{\mathrm{tp}}=n$ (total number of examples)

- $N_{\mathrm{n}}=C_{\mathrm{tn}}+C_{\mathrm{fp}}$ is number of negative examples
- $N_{\mathrm{p}}=C_{\mathrm{fn}}+C_{\mathrm{tp}}$ is number of positive examples
- diagonal entries give numbers of correct predictions
- off-diagonal entries give numbers of incorrect predictions of the two types

Some Boolean classification performance metrics

- confusion matrix $\left[\begin{array}{cc}C_{\mathrm{tn}} & C_{\mathrm{fn}} \\ C_{\mathrm{fp}} & C_{\mathrm{tp}}\end{array}\right]$
- the basic error measures:
- false positive rate is C_{fp} / n
- false negative rate is C_{fn} / n
- error rate is $\left(C_{\mathrm{fn}}+C_{\mathrm{fp}}\right) / n$
- error measures some people use:
- true positive rate or sensitivity or recall is $C_{\mathrm{tp}} / N_{\mathrm{p}}$ (fraction of true positives we correctly guess)
- false alarm rate is $C_{\mathrm{fp}} / N_{\mathrm{n}} \quad$ (fraction of true negatives we incorrectly guess as positive)
- specificity or true negative rate is $C_{\mathrm{tn}} / N_{\mathrm{n}} \quad$ (fraction of true negatives we correctly guess)
- precision is $C_{\mathrm{tp}} /\left(C_{\mathrm{tp}}+C_{\mathrm{fp}}\right) \quad$ (fraction of our positive guesses that really are positive)

Neyman-Pearson metric

- we have two metrics or objectives for a Boolean classifier: false positive and false negative rate
- we want both small
- to obtain a single (number) metric, we combine them with a weight to get the Neyman-Pearson metric

$$
E^{\mathrm{NP}}=\kappa C_{\mathrm{fn}} / n+C_{\mathrm{fp}} / n
$$

- $\kappa>0$ sets how much we care about false negatives, compared to false positives
- for $\kappa>1$, false negatives upset us more than false positives
- for $\kappa<1$, false negatives upset us less than false positives
- for $\kappa=1, E^{\mathrm{NP}}=E$, the overall error rate

False positive and false negatives

- Boolean classifier has two objectives: false positive rate and true positive rate
- plot the performance of each classifier
- G_{3} is worse than G_{2} (more false positives and more false negatives)

- G_{1} has fewer false negatives than G_{2}, but more false positives

ROC curve

- red points are Pareto optimal; no other classifier is better in both C_{fp} and C_{fn}
- set of all Pareto optimal points is called the ROC or operating characteristic
- ROC stands for Receiver Operating Characteristic (from WWII, never spelled out)
- it is common to develop multiple classifiers, which trade off these two error rates

Neyman-Pearson error

- we can measure performance in different directions in this plane
- let $\kappa>0$ be how much more false negatives irritate us than false positives
- instead of using the error-rate as a performance metric, use the weighted-sum

$$
\kappa C_{\mathrm{fn}} / n+C_{\mathrm{fp}} / n
$$

- a scalarization of two objectives called the Neyman-Pearson error
- when $\kappa=1$, the Neyman-Pearson error is the error rate
- each green line shows points where $\kappa C_{\mathrm{fn}} / n+C_{\mathrm{fp}} / n$ is constant; slope of dashed lines is $-\kappa$

Example

- red points have $v=-1$, blue have $v=1$
- false negative are blue points for which the classifier would predict red
- plot 1 has $C=\left[\begin{array}{cc}24 & 1 \\ 16 & 59\end{array}\right]$
- plot 2 has $C=\left[\begin{array}{cc}32 & 8 \\ 8 & 52\end{array}\right]$
plot 3 has $C=\left[\begin{array}{cc}38 & 23 \\ 2 & 37\end{array}\right]$

Performance metrics for multiclass classification

Error types

- there are K^{2} possible values of (\hat{v}, v), since $\hat{v}, v \in\left\{v_{1}, \ldots, v_{k}\right\}$
- $\hat{v}=v_{i}, v=v_{j}$ means the true value is v_{j}, and we predict v_{i}
- prediction is correct when $v_{i}=v_{j}$, and an error when $v_{i} \neq v_{j}$
- we further distinguish $K(K-1)$ types of errors, one for each pair i, j with $i \neq j$
- for $i \neq j, \hat{v}=v_{i}, v=v_{j}$ means we mistook v_{j} for v_{i}
- i.e., the value is v_{j}, but we guess v_{i}

Confusion matrix

- $K \times K$ confusion matrix is defined by

$$
C_{i j}=\# \text { records with } \hat{v}=v_{i} \text { and } v=v_{j}
$$

(warning: some people use the transpose of C)

- entries in C add up to n
- column sums of C give number of records in each class in the data set
- $C_{i i}$ is the number of times we predict v_{i} correctly
- $C_{i j}$ for $i \neq j$ is the number of times we mistook v_{j} for v_{i}
- there are $K(K-1)$ different error rates, $E_{i j}=C_{i j} / n, i \neq j$
- the overall error rate is $E=\sum_{i \neq j} C_{i j} / n=\sum_{i \neq j} E_{i j}$

Example

- red $=1$, green $=2$, blue $=3$
- confusion matrix $C=\left[\begin{array}{ccc}39 & 5 & 1 \\ 1 & 34 & 2 \\ 0 & 1 & 17\end{array}\right]$
- error rates $E=\left[\begin{array}{ccc}0 & 0.05 & 0.01 \\ 0.01 & 0 & 0.02 \\ 0 & 0.01 & 0\end{array}\right]$
- error rate $=10 \%$

Neyman-Pearson error

- $E_{j}=\sum_{i \neq j} C_{i j}$ is number of times we mistook v_{j} for another class
- E_{j} / n is the error rate of mistaking v_{j}
- we will scalarize these K error rates using a weighted sum
- the Neyman-Pearson error is

$$
\sum_{j=1}^{K} \kappa_{j} E_{j}=\sum_{i \neq j} \kappa_{j} C_{i j} / n
$$

where κ is a weight vector with nonnegative entries

- κ_{j} is how much we care about mistaking v_{j}
- for $\kappa_{j}=1$ for all i, Neyman-Pearson error is the error rate

