Boolean classification

- embed the two classes as $y = \pm 1$
- use RERM to fit, with various loss functions and regularizers
- validate using Neyman-Pearson metric on test data, $\kappa E_{fn} + E_{fp}$
 - κ is our relative distaste for mistaking a positive example
 - for $\kappa = 1$, reduces to error rate
Loss functions
Loss functions for Boolean classification

- y can only take values -1 or 1, so to specify ℓ, we only need to give two functions of \hat{y}:
 - $\ell(\hat{y}, -1)$ is how much \hat{y} irritates us when $y = -1$
 - $\ell(\hat{y}, 1)$ is how much \hat{y} irritates us when $y = 1$

- We will define ℓ via a penalty function $p : \mathbb{R} \rightarrow \mathbb{R}$
 - $\ell(\hat{y}, -1) = p(\hat{y})$
 - $\ell(\hat{y}, 1) = \kappa p(-\hat{y}) = \kappa \ell(-\hat{y}, -1)$

- $p(\hat{y})$ should be small for \hat{y} negative
- $p(\hat{y})$ should be larger \hat{y} positive
- κ gives our relative dislike of mistaking $y = 1$
Square loss

\[\ell(\hat{y}, -1) = (1 + \hat{y})^2, \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa (1 - \hat{y})^2 \]

- doesn’t satisfy desired properties, e.g., \(\ell(-3, -1) \) should be very small, not large
- ERM is least squares problem, and so, easy to solve
Neyman-Pearson loss

Neyman-Pearson loss is

\[\ell_{NP}(\hat{y}, -1) = \begin{cases}
1 & \hat{y} \geq 0 \\
0 & \hat{y} < 0
\end{cases} \]

\[\ell_{NP}(\hat{y}, 1) = \kappa \ell_{NP}(\hat{y}, -1) = \begin{cases}
\kappa & \hat{y} < 0 \\
0 & \hat{y} \geq 0
\end{cases} \]
Neyman-Pearson loss

- it’s the same as our performance metric, which would seem good
- but it’s very hard to minimize $\mathcal{L}(\theta)$, since it’s discontinuous, has zero derivative almost everywhere
- surprisingly, we get better performance using different loss functions, that are also easier to minimize
- if they’re convex, and the regularizer is convex, we can solve the RERM problem efficiently
Sigmoid loss

\[\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}} \]
\[\ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \frac{\kappa}{1 + e^{\hat{y}}} \]

- differentiable approximation of Neyman-Pearson loss
- but not convex
Logistic loss

\[\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}), \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa \log(1 + e^{-\hat{y}}) \]

- differentiable and convex approximation of Neyman-Pearson loss
Hinge loss

\[\ell(\hat{y}, -1) = (1 + \hat{y})_+ \]

\[\ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa (1 - \hat{y})_+ \]

- another convex approximation of Neyman-Pearson loss
Hubristic loss

- define the *hubristic loss* (huber + logistic) as

\[
\ell(\hat{y}, -1) = \begin{cases}
0 & \hat{y} < -1 \\
(\hat{y} + 1)^2 & -1 \leq \hat{y} \leq 0 \\
1 + 2\hat{y} & \hat{y} > 0
\end{cases}
\]

- \(\ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) \)
Boolean classifiers
Boolean classifiers with names

- least squares classifier uses square loss, square regularizer
- logistic regression uses logistic loss, any regularizer, as in, logistic regression with ℓ_1 regularizer
- support vector machine (SVM) uses hinge loss, square regularizer
Example

logistic loss: \(C = \begin{bmatrix} 89 & 5 \\ 11 & 95 \end{bmatrix} \)

squared loss: \(C = \begin{bmatrix} 89 & 4 \\ 11 & 96 \end{bmatrix} \)
Support vector machine

- decision boundary is $\theta^T x = 0$
- black lines show points where $\theta^T x = \pm 1$
- what is the training risk here?
Example: Australian weather

- we have measurements of multiple attributes of weather at multiple locations in Australia
- over 10 years from 2007 to 2017
- 142,193 records
- given measurements from today, predict if it will rain tomorrow
- removing records with missing data leaves 112,925 records
- data from Australian weather stations, downloaded from https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
Example: Australian weather

- numeric fields
 - MinTemp, MaxTemp, Rainfall, WindGustSpeed, WindSpeed9am, WindSpeed3pm, Humidity9am, Humidity3pm, Pressure9am, Pressure3pm, Temp9am, Temp3pm

- categorical fields
 - location (44 possible locations)
 - WindGustDir, WindDir9am, WindDir3pm (16 compass points)
 - RainToday (YES or NO)

- additional field: date
Some data

Here we look at a random 2% of the data, for a few features.

Blue points indicate next day rainfall.
Embedding

- for $x = \phi(u)$
 - embed 12 numeric fields via identity map
 - embed 3 wind directions as one-hot (16 compass points)
 - embed RainToday as $\{-1, 1\}$
 - do not use date or location fields (did not improve validation performance)
 - standardize
 - add constant feature
 - results in $x \in \mathbb{R}^{62}$
- embed $y = \psi(v)$ as $\{-1, 1\}$ where v is RainTomorrow
use logistic loss function

\[\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}), \quad \ell(\hat{y}, 1) = \kappa \log(1 + e^{-\hat{y}}) \]

linear predictor \(\hat{y} = \theta^\top x \)

and square regularization \(r(\theta) = \|\theta_2\|_2^2 \)
randomly split 80/20 into train/test sets

test and train results very similar (test in red, train in blue)

minimum probability of error = 16%

rain frequency = 22%, so a predictor that always predicts no rain will achieve 22% error
Important features

- **important feature**: Pressure9am - Pressure3pm ($i = 10, 11$)

- **rapidly falling pressure indicates a storm is coming**

- **note**: 16 one-hot embedded values for WindDir9am ($i = 30, \ldots, 45$) all sum to one

- **retraining with 6 features**: MinTemp, MaxTemp, WindGustSpeed, Humidity3pm, Pressure9am, Pressure3pm achieves 16.5% probability of error